An underlying geometrical manifold for Hamiltonian mechanics

L. P. Horwitz, A. Yahalom, J. Levitan, M. Lewkowicz

PDF(167 KB)
PDF(167 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 124501. DOI: 10.1007/s11467-016-0610-5
RESEARCH ARTICLE
RESEARCH ARTICLE

An underlying geometrical manifold for Hamiltonian mechanics

Author information +
History +

Abstract

We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton–Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian–Lagrange picture, defined on the Hamilton–Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton–Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton–Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

Keywords

geometrical Hamiltonian / stability analysis / coordinate mapping / Riemann–Euclidean Hamiltonian equivalence

Cite this article

Download citation ▾
L. P. Horwitz, A. Yahalom, J. Levitan, M. Lewkowicz. An underlying geometrical manifold for Hamiltonian mechanics. Front. Phys., 2017, 12(1): 124501 https://doi.org/10.1007/s11467-016-0610-5

References

[1]
L. P. Horwitz, Y. Ben Zion, M. Lewkowicz, M. Schiffer, and J. Levitan, Geometry of Hamiltonian chaos, Phys. Rev. Lett. 98, 234301 (2007). Geometrical methods of a different form were first introduced by C. G. J. Jacobi, Vorlesungen über Dynamik, Berlin: Verlag Reimer, 1884; J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, J. Math. Pures Appl. 4, 27 (1898), and further developed by L. Casetti and M. Pettini, Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry, Phys. Rev. E 48, 4320 (1993). see also: M. Pettini, Geometery and Topology in Hamiltonian Dynamics and Statistical Mechanics, New York: Springer, 2006, and references therein
[2]
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, New York: Springer-Verlag, 1990
CrossRef ADS Google scholar
[3]
W. D. Curtis and F. R. Miller, Differentiable Manifolds and Theoretical Physics, New York: Academic Press, 1985
[4]
Y. Ben Zion and L. P. Horwitz, Detecting order and chaos in three-dimensional Hamiltonian systems by geometrical methods, Phys. Rev. E 76(4), 046220 (2007). Y. Ben Zion and L. Horwitz, Applications of geometrical criteria for transition to Hamiltonian chaos, Phys. Rev. E 78(3), 036209 (2008). Y. Ben Zion and L. Horwitz, Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems, Phys. Rev. E 81, 046217 (2010)
CrossRef ADS Google scholar
[5]
A. Yahalom, J. Levitan, and M. Lewkowicz, Lyapunov vs. Geometrical stability analysis of the Kepler and the restricted three-body problems, Phys. Lett. A 375, 2111 (2011). See also, J. Levitan, A. Yahalom, L. Horwitz, and M. Lewkowicz, On the stability of Hamiltonian systems with weakly time dependent potentials, Chaos 23(2), 023122 (2013)
[6]
L. Horwitz, A. Yahalom, M. Lewkowicz, and J. Levitan, Subtle is the Lord: On the difference between Hamiltonian (Lyapunov) stability analysis and geometrical stability analysis of gravitational orbits, Int. J. Mod. Phys. D 20(14), 2787 (2011)
CrossRef ADS Google scholar
[7]
A. Yahalom, M. Lewkowicz, J. Levitan, G. Elgressy, L. P. Horwitz, and Y. Ben Zion, Uncertainty relations for chaos, International Journal of Geometric Methods in Modern Physics 12(09), 1550093 (2015)
CrossRef ADS Google scholar
[8]
Y. Strauss, L. P. Horwitz, J. Levitan, and A. Yahalom, Quantum field theory of classically unstable Hamiltonian dynamics, J. Math. Phys. 56(7), 072701 (2015)
CrossRef ADS Google scholar
[9]
E. Calderon, L. Horwitz, R. Kupferman, and S. Shnider, On the geometrical formulation of Hamiltonian dynamics, Chaos 23(1), 013120 (2013)
CrossRef ADS Google scholar
[10]
A. Gershon and L. P. Horwitz, Kaluza-Klein theory as a dynamics in a dual geometry, J. Math. Phys. 50(10), 102704 (2009)
CrossRef ADS Google scholar
[11]
L. P. Horwitz, A. Gershon, and M. Schiffer, Hamiltonian map to conformal modification of space-time metric: Kaluza–Klein and TeVeS, Found. Phys. 41(1), 141 (2010)
CrossRef ADS Google scholar
[12]
M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270, 365 (1983); A modification of the Newtonian dynamics: Implications for Galaxies, 371, A modification of the Newtonian dynamics: Implications for Galaxy Systems, 384 (1983)
CrossRef ADS Google scholar
[13]
J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70, 083509 (2004)
CrossRef ADS Google scholar
[14]
J. D. Bekenstein and R. H. Sanders, A Primer to Relativistic MOND Theory, EAS Pub. Series 20, 225 (2006)
[15]
H. Safaai, M. Hasan, and G. Saadat, On the Prediction of Chaos in the Restricted Three-body Problem, in Understanding Complex Systems, Berlin: Springer, 2006, p. 369
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/