Review of LIBS application in nuclear fusion technology
Cong Li (李聪), Chun-Lei Feng (冯春雷), Hassan Yousefi Oderji, Guang-Nan Luo (罗广南), Hong-Bin Ding (丁洪斌)
Review of LIBS application in nuclear fusion technology
Nuclear fusion has enormous potential to greatly affect global energy production. The next-generation tokamak ITER, which is aimed at demonstrating the feasibility of energy production from fusion on a commercial scale, is under construction. Wall erosion, material transport, and fuel retention are known factors that shorten the lifetime of ITER during tokamak operation and give rise to safety issues. These factors, which must be understood and solved early in the process of fusion reactor design and development, are among the most important concerns for the community of plasma–wall interaction researchers. To date, laser techniques are among the most promising methods that can solve these open ITER issues, and laser-induced breakdown spectroscopy (LIBS) is an ideal candidate for online monitoring of the walls of current and next-generation (such as ITER) fusion devices. LIBS is a widely used technique for various applications. It has been considered recently as a promising tool for analyzing plasma-facing components in fusion devices in situ. This article reviews the experiments that have been performed by many research groups to assess the feasibility of LIBS for this purpose.
LIBS / nuclear fusion / plasma-facing components
[1] |
V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, H. J. van der Meiden, P. Petersson, M. Rubel, A. Huber, M. Zlobinski, B. Schweer, N. Gierse, Q. Xiao, and G. Sergienko, Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices, Nucl. Fusion 53(9), 093002 (2013)
CrossRef
ADS
Google scholar
|
[2] |
G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41(12), 1967 (2001)
CrossRef
ADS
Google scholar
|
[3] |
G. Federici, P. Andrew, P. Barabaschi, J. Brooks, R. Doerner, A. Geier, A. Herrmann, G. Janeschitz, K. Krieger, A. Kukushkin, A. Loarte, R. Neu, G. Saibene, M. Shimada, G. Strohmayer, and M. Sugihara, Key ITER plasma edge and plasma–material interaction issues, J. Nucl. Mater.313–316, 11 (2003)
CrossRef
ADS
Google scholar
|
[4] |
M. Rubel, P. Wienhold, and D. Hildebrandt, Fuel accumulation in co-deposited layers on plasma facing components,J. Nucl. Mater. 290–293, 473 (2001)
CrossRef
ADS
Google scholar
|
[5] |
K. Sugiyama, T. Hayashi, K. Krieger, M. Mayer, K. Masaki, N. Miya, and T. Tanabe, Ion beam analysis of H and D retention in the near surface layers of JT-60U plasma facing wall tiles, J. Nucl. Mater. 363–365, 949 (2007)
CrossRef
ADS
Google scholar
|
[6] |
M. Mayer, V. Rohde, J. Likonen, E. Vainonen-Ahlgren, K. Krieger, X. Gong, and J. Chen, Carbon erosion and deposition on the ASDEX Upgrade divertor tiles, J. Nucl. Mater. 337–339, 119 (2005)
CrossRef
ADS
Google scholar
|
[7] |
A. Yoshikawa, Y. Hirohata, Y. Oya, T. Shibahara, M. Oyaidzu, T. Arai, Y. Gotoh, K. Masaki, N. Miya, K. Okuno, and T. Tanabe, Hydrogen retention and depth profile in divertor tiles of Jt-60 exposed to hydrogen discharges, Fusion Eng. Des. 81(1–7), 289 (2006)
|
[8] |
T. Shibahara, T. Tanabe, Y. Hirohata, Y. Oya, M. Oyaidzu, A. Yoshikawa, Y. Onishi, T. Arai, K. Masaki, K. Okuno, and N. Miya, Hydrogen retention of JT-60 open divertor tiles exposed to HH discharges, Nucl. Fusion 46(10), 841 (2006)
CrossRef
ADS
Google scholar
|
[9] |
K. Katayama, T. Takeishi, Y. Manabe, H. Nagase, M. Nishikawa, and N. Miya, Tritium release behavior from the graphite tiles used at the dome unit of the W-shaped divertor region in JT-60U,J. Nucl. Mater. 340(1), 83 (2005)
CrossRef
ADS
Google scholar
|
[10] |
T. Hino, K. Iwamoto, Y. Hirohata, T. Yamashina, A. Sagara, N. Noda, N. Inoue, Y. Kubota, N. Natsir, O. Motojima, T. Matsuda, T. Sogabe, K. Kuroda, and M. Yabe, Properties of boron coatings used as plasma facing material of fusion device, Thin Solid Films 253(1–2), 518 (1994)
CrossRef
ADS
Google scholar
|
[11] |
E. Taglauer and G. Staudenmaier, Surface analysis in fusion devices, J. Vac. Sci. Technol. A 5(4), 1352 (1987)
CrossRef
ADS
Google scholar
|
[12] |
J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd Ed., New York: Springer, 2003
CrossRef
ADS
Google scholar
|
[13] |
D. G. Whyte, J. P. Coad, P. Franzen, and H. Maier, Similarities in divertor erosion/redeposition and deuterium retention patterns between the tokamaks ASDEX Upgrade, DIII-D and JET, Nucl. Fusion 39(8), 1025 (1999)
CrossRef
ADS
Google scholar
|
[14] |
Y. Oya, Y. Hirohata, Y. Morimoto, H. Yoshida, H. Kodama, K. Kizu, J. Yagyu, Y. Gotoh, K. Masaki, K. Okuno, T. Tanabe, N. Miya, T. Hino, and S. Tanaka, Hydrogen isotope behavior in in-vessel components used for DD plasma operation of JT-60U by SIMS and XPS technique, J. Nucl. Mater.313–316, 209 (2003)
CrossRef
ADS
Google scholar
|
[15] |
D. L. Rudakov, C. P. C. Wong, A. Litnovsky, W. R. Wampler, J. A. Boedo, N. H. Brooks, M. E. Fenstermacher, M. Groth, E. M. Hollmann, W. Jacob, S. I. Krasheninnikov, K. Krieger, C. J. Lasnier, A. W. Leonard, A. G. McLean, M. Marot, R. A. Moyer, T. W. Petrie, V. Philipps, R. D. Smirnov, P. C. Stangeby, J. G. Watkins, W. P. West, and J. H. Yu, Overview of the recent DiMES and MiMES experiments in DIII-D, Phys. Scr. T138, 014007 (2009)
CrossRef
ADS
Google scholar
|
[16] |
A. Huber, B. Schweer, V. Philipps, N. Gierse, M. Zlobinski, S. Brezinsek, W. Biel, V. Kotov, R. Leyte-Gonzales, Ph. Mertens, and U. Samm, Development of laser-based diagnostics for surface characterisation of wall components in fusion devices, Fusion Eng. Des. 86(6–8), 1336 (2011)
CrossRef
ADS
Google scholar
|
[17] |
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef
ADS
Google scholar
|
[18] |
N. Farid, C. Li, H. Wang, and H. Ding, Laser-induced breakdown spectroscopic characterization of tungsten plasma using the first, second, and third harmonics of an Nd:YAG laser, J. Nucl. Mater. 433(1–3), 80 (2013)
CrossRef
ADS
Google scholar
|
[19] |
N. Farid, H. Wang, C. Li, X. Wu, H. Y. Oderji, H. Ding, and G. N. Luo, Effect of background gases at reduced pressures on the laser treated surface morphology, spectral emission and characteristics parameters of laser produced Mo plasmas, J. Nucl. Mater. 438(1–3), 183 (2013)
CrossRef
ADS
Google scholar
|
[20] |
R. Hai, P. Liu, D. Wu, Q. Xiao, L. Sun, and H. Ding, Effect of steady magnetic field on laser-induced breakdown spectroscopic characterization of EAST-like wall materials, J. Nucl. Mater. 463, 927 (2015)
CrossRef
ADS
Google scholar
|
[21] |
P. Liu, R. Hai, D. Wu, Q. Xiao, L. Sun, and H. Ding, The enhanced effect of optical emission from laser induced breakdown spectroscopy of an Al-Li alloy in the presence of magnetic field confinement, Plasma Sci. Technol. 17(8), 687 (2015)
CrossRef
ADS
Google scholar
|
[22] |
R. Hai, P. Liu, D. Wu, H. Ding, J. Wu, and G. N. Luo, Collinear double-pulse laser-induced breakdown spectroscopy as an in-situ diagnostic tool for wall composition in fusion devices, Fusion Eng. Des. 89(9–10), 2435 (2014)
CrossRef
ADS
Google scholar
|
[23] |
R. Hai, X. Wu, Y. Xin, P. Liu, D. Wu, H. Ding, Y. Zhou, L. Cai, and L. Yan, Use of dual-pulse laser-induced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2014)
CrossRef
ADS
Google scholar
|
[24] |
D. Zhao, N. Farid, R. Hai, D. Wu, and H. Ding, Diagnostics of first wall materials in a magnetically confined fusion device by polarization-resolved laser-induced breakdown spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
CrossRef
ADS
Google scholar
|
[25] |
C. Li, D. Zhao, X. Wu, and H. Ding, Spatial resolution measurements of C, Si and Mo using LIBS for diagnostics of plasma facing materials in a fusion device, Plasma Sci. Technol. 17(8), 638 (2015)
CrossRef
ADS
Google scholar
|
[26] |
C. Li, D. Zhao, Z. Hu, X. Wu, G. N. Luo, J. Hu, and H. Ding, Characterization of deuterium retention and co-deposition of fuel with lithium on the divertor tile of EAST using laser induced breakdown spectroscopy, J. Nucl. Mater. 463, 915 (2015)
CrossRef
ADS
Google scholar
|
[27] |
R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak, Spectrochim. Acta B 87, 147 (2013)
CrossRef
ADS
Google scholar
|
[28] |
R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater. 438, S1168 (2013)
CrossRef
ADS
Google scholar
|
[29] |
L. Mercadier, J. Hermann, C. Grisolia, and A. Semerok, Plume segregation observed in hydrogen and deuterium containing plasmas produced by laser ablation of carbon fiber tiles from a fusion reactor, Spectrochim. Acta B 65(8), 715 (2010)
CrossRef
ADS
Google scholar
|
[30] |
L. Mercadier, J. Hermann, C. Grisolia, and A. Semerok, Analysis of deposited layers on plasma facing components by laser-induced breakdown spectroscopy: Towards ITER tritium inventory diagnostics, J. Nucl. Mater. 415(1), S1187 (2011)
CrossRef
ADS
Google scholar
|
[31] |
A. Semerok and C. Grisolia, LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography, Nucl. Instrum. Methods Phys. Res. A 720, 31 (2013)
CrossRef
ADS
Google scholar
|
[32] |
S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Laboratory feasibility study of fusion vessel inner wall chemical analysis by Laser Induced Breakdown Spectroscopy, Chem. Phys. 398, 228 (2012)
CrossRef
ADS
Google scholar
|
[33] |
S. Almaviva, L. Caneve, F. Colao, R. Fantoni, and G. Maddaluno, Remote-LIBS characterization of ITERlike plasma facing materials, J. Nucl. Mater. 421(1–3), 73 (2012)
CrossRef
ADS
Google scholar
|
[34] |
R. Fantoni, S. Almaviva, L. Caneve, F. Colao, A. M. Popov, and G. Maddaluno, Development of Calibration-Free Laser-Induced-Breakdown- Spectroscopy based techniques for deposited layers diagnostics on ITER-like tiles, Spectrochim. Acta B 87, 153 (2013)
CrossRef
ADS
Google scholar
|
[35] |
A. Huber, B. Schweer, V. Philipps, R. Leyte-Gonzales, N. Gierse, M. Zlobinski, S. Brezinsek, V. Kotov, P. Mertens, U. Samm, and G. Sergienko, Study of the feasibility of applying laser-induced breakdown spectroscopy for in-situ characterization of deposited layers in fusion devices, Phys. Scr. T145, 014028 (2011)
CrossRef
ADS
Google scholar
|
[36] |
N. Gierse, B. Schweer, A. Huber, O. Karger, V. Philipps, U. Samm, and G. Sergienko, In situ characterisation of hydrocarbon layers in TEXTOR by laser induced ablation and laser induced breakdown spectroscopy, J. Nucl. Mater. 415(1), S1195 (2011)
CrossRef
ADS
Google scholar
|
[37] |
J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, M. Laan, and P. Paris, Applicability of LIBS for in situ monitoring of deposition and retention on the ITERlike wall of JET – Comparison to SIMS, J. Nucl. Mater. 463, 931 (2015)
CrossRef
ADS
Google scholar
|
[38] |
J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, P. Paris, M. Laan, K. Piip, C. Porosnicu, C. P. Lungu, and K. Sugiyama, Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER, Phys. Scr. T159, 014067 (2014)
CrossRef
ADS
Google scholar
|
[39] |
H. Y. Oderji, N. Farid, L. Sun, C. Fu, and H. Ding, Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions, Spectrochim. Acta B 122, 1 (2016)
CrossRef
ADS
Google scholar
|
[40] |
J. Rapp, W. R. Koppers, H. J. N. van Eck, G. J. van Rooij, W. J. Goedheer, B. de Groot, R. Al, M. F. Graswinckel, M. A. van den Berg, O. Kruyt, P. Smeets, H. J. van der Meiden, W. Vijvers, J. Scholten, M. van de Pol, S. Brons, W. Melissen, T. van der Grift, R. Koch, B. Schweer, U. Samm, V. Philipps, R. A. H. Engeln, D. C. Schram, N. J. L. Cardozo, and A. W. Kleyn, Construction of the plasma-wall experiment Magnum-PSI, Fusion Eng. Des. 85(7–9), 1455 (2010)
CrossRef
ADS
Google scholar
|
[41] |
G. De Temmerman, M. A. van den Berg, J. Scholten, A. Lof, H. J. van der Meiden, H. J. N. van Eck, T. W. Morgan, T. M. de Kruijf, P. A. Z. van Emmichoven, and J. J. Zielinski, High heat flux capabilities of the Magnum-PSI linear plasma device, Fusion Eng. Des. 88(6–8), 483 (2013)
CrossRef
ADS
Google scholar
|
[42] |
C. Li, X. Wu, C. Zhang, H. Ding, G. De Temmerman, and H. J. van der Meiden, Study of deuterium retention on lithiated tungsten exposed to high-flux deuterium plasma using laser-induced breakdown spectroscopy, Fusion Eng. Des. 89(7–8), 949 (2014)
CrossRef
ADS
Google scholar
|
[43] |
K. Piip, G. De Temmerman, H. J. van der Meiden, A. Lissovski, J. Karhunen, M. Aints, A. Hakola, P. Paris, M. Laan, J. Likonen, I. Jõgi, J. Kozlova, and H. Mändar, LIBS analysis of tungsten coatings exposed to Magnum PSI ELM-like plasma, J. Nucl. Mater. 463, 919 (2015)
CrossRef
ADS
Google scholar
|
[44] |
P. Paris, A. Hakola, K. Bystrov, G. De Temmerman, M. Aints, I. Jõgi, M. Kiisk, J. Kozlova, M. Laan, J. Likonen, and A. Lissovski, Erosion of marker coatings exposed to Pilot-PSI plasma, J. Nucl. Mater. 438, S754 (2013)
CrossRef
ADS
Google scholar
|
[45] |
C. Li, X. Wu, C. Zhang, H. Ding, J. Hu, and G. N. Luo, In situ chemical imaging of lithiated tungsten using laser-induced breakdown spectroscopy, J. Nucl. Mater. 452(1–3), 10 (2014)
CrossRef
ADS
Google scholar
|
[46] |
Q. Xiao, R. Hai, H. Ding, A. Huber, V. Philipps, N. Gierse, and G. Sergienko, In-situ analysis of the first wall by laser-induced breakdown spectroscopy in the TEXTOR tokamak: Dependence on the magnetic field strength, J. Nucl. Mater. 463, 911 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |