Electron microscopy methods for space-, energy-, and time-resolved plasmonics

Arthur Losquin, Tom T. A. Lummen

PDF(30037 KB)
PDF(30037 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 127301. DOI: 10.1007/s11467-016-0605-2
REVIEW ARTICLE
REVIEW ARTICLE

Electron microscopy methods for space-, energy-, and time-resolved plasmonics

Author information +
History +

Abstract

Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.

Keywords

plasmonics / electron microscopy / Electron Energy Loss Spectroscopy (EELS) / cathodoluminescence / Photoemission Electron Microscopy (PEEM) / Photo-Induced Near-field Electron Microscopy (PINEM) / Electron Energy Gain Spectroscopy (EEGS)

Cite this article

Download citation ▾
Arthur Losquin, Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Front. Phys., 2017, 12(1): 127301 https://doi.org/10.1007/s11467-016-0605-2

References

[1]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (6950), 824 (2003)
CrossRef ADS Google scholar
[2]
E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
CrossRef ADS Google scholar
[3]
L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2012, p. 564
CrossRef ADS Google scholar
[4]
M. S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope, Appl. Phys. Lett. 76(21), 3130 (2000)
CrossRef ADS Google scholar
[5]
N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Metallized tip amplification of near-field Raman scattering, Opt. Commun. 183(1–4), 333 (2000)
CrossRef ADS Google scholar
[6]
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. V. Duyne, Surface-Enhanced Raman Spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
CrossRef ADS Google scholar
[7]
M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)
CrossRef ADS Google scholar
[8]
N. F. V. Hulst, N. P. de Boer, and B. Bölger, An evanescent-field optical microscope, J. Microsc. 163(2), 117 (1991)
CrossRef ADS Google scholar
[9]
H. Heinzelmann and D. W. Pohl, Scanning near-field optical microscopy, Appl. Phys. A 59(2), 89 (1994)
CrossRef ADS Google scholar
[10]
C. Bohm, J. Bangert, W. Mertin, and E. Kubalek, Time resolved near-field scanning optical microscopy, J. Phys. D Appl. Phys. 27(10), 2237 (1994)
CrossRef ADS Google scholar
[11]
H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94(7), 073903 (2005)
CrossRef ADS Google scholar
[12]
P. B. Johnson and R. W. Christy, Optical constants of the Noble metals, Phys. Rev. B 6(12), 4370 (1972)
CrossRef ADS Google scholar
[13]
A. Asenjo-Garcia and F. J. García de Abajo, Plasmon electron energy-gain spectroscopy, New J. Phys. 15(10), 103021 (2013)
CrossRef ADS Google scholar
[14]
F. J. García de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82(1), 209 (2010)
CrossRef ADS Google scholar
[15]
E. J. R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes- Coronado, P. E. Batson, and A. Polman, Plasmonic excitation and manipulation with an electron beam, MRS Bull. 37(08), 752 (2012)
CrossRef ADS Google scholar
[16]
M. Kociak and O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope, Chem. Soc. Rev. 43(11), 3865 (2014)
CrossRef ADS Google scholar
[17]
C. Colliex, M. Kociak, and O. Stéphan, Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale, Ultramicroscopy 162, A1 (2016)
CrossRef ADS Google scholar
[18]
C. Cherqui, N. Thakkar, G. Li, J. P. Camden, and D. Masiello, Characterizing localized surface plasmons using electron energy-loss spectroscopy, arXiv: 1509.08430v2 (2015)
[19]
R. H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106(5), 874 (1957)
CrossRef ADS Google scholar
[20]
C. J. Powell and J. B. Swan, Origin of the characteristic electron energy losses in aluminum, Phys. Rev. 115(4), 869 (1959)
CrossRef ADS Google scholar
[21]
E. A. Stern and R. A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. 120(1), 130 (1960)
CrossRef ADS Google scholar
[22]
R. A. Ferrell, Predicted radiation of plasma oscillations in metal films, Phys. Rev. 111(5), 1214 (1958)
CrossRef ADS Google scholar
[23]
W. Steinmann, Experimental verification of radiation of plasma oscillations in thin silver films, Phys. Rev. Lett. 5(10), 470 (1960)
CrossRef ADS Google scholar
[24]
P. Batson, Surface plasmon coupling in clusters of small spheres, Phys. Rev. Lett. 49(13), 936 (1982)
CrossRef ADS Google scholar
[25]
P. Batson, A new surface plasmon resonance in clusters of small aluminum spheres, Ultramicroscopy 9(3), 277 (1982)
CrossRef ADS Google scholar
[26]
J. Cowley, Surface energies and surface structure of small crystals studied by use of a stem instrument, Surf. Sci. 114(2–3), 587 (1982)
CrossRef ADS Google scholar
[27]
L. Marks, Observation of the image force for fast electrons near an MgO surface, Solid State Commun. 43(10), 727 (1982)
CrossRef ADS Google scholar
[28]
M. Scheinfein, A. Muray, and M. Isaacson, Electron energy loss spectroscopy across a metal-insulator interface at sub-nanometer spatial resolution, Ultramicroscopy 16(2), 233 (1985)
CrossRef ADS Google scholar
[29]
A. Howie and R. Milne, Excitations at interfaces and small particles, Ultramicroscopy 18(1–4), 427 (1985)
[30]
M. Achèche, C. Colliex, H. Kohl, A. Nourtier, and P. Trebbia, Theoretical and experimental study of plasmon excitations in small metallic spheres, Ultramicroscopy 20(1–2), 99 (1986)
CrossRef ADS Google scholar
[31]
Z. Wang and J. Cowley, Size and shape dependence of the surface plasmon frequencies for supported metal particle systems, Ultramicroscopy 23(1), 97 (1987)
CrossRef ADS Google scholar
[32]
D. Ugarte, C. Colliex, and P. Trebbia, Surfaceand interface-plasmon modes on small semiconducting spheres, Phys. Rev. B 45(8), 4332 (1992)
CrossRef ADS Google scholar
[33]
P. Moreau, N. Brun, C. A. Walsh, C. Colliex, and A. Howie, Relativistic effects in electron-energy-lossspectroscopy observations of the Si/SiO2 interface plasmon peak, Phys. Rev. B 56(11), 6774 (1997)
CrossRef ADS Google scholar
[34]
N. Yamamoto, K. Araya, and F. García de Abajo, Photon emission from silver particles induced by a highenergy electron beam, Phys. Rev. B 64(20), 205419 (2001)
CrossRef ADS Google scholar
[35]
J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza- Santos, L. M. Liz-Marzán, and C. Colliex, Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3(5), 348 (2007)
CrossRef ADS Google scholar
[36]
M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology 18(16), 165505 (2007)
CrossRef ADS Google scholar
[37]
J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy, Appl. Phys. Lett. 88(22), 221111 (2006)
CrossRef ADS Google scholar
[38]
M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, Generation of traveling surface plasmon waves by free-electron impact, Nano Lett. 6(6), 1113 (2006)
CrossRef ADS Google scholar
[39]
M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution, Opt. Express 15(18), 11313 (2007)
CrossRef ADS Google scholar
[40]
F. J. García de Abajo, Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam, Phys. Rev. B 59(4), 3095 (1999)
CrossRef ADS Google scholar
[41]
G. Boudarham and M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes, Phys. Rev. B 85(24), 245447 (2012)
CrossRef ADS Google scholar
[42]
A. Losquin, L. F. Zagonel, V. Myroshnychenko, B. Rodríguez-González, M. Tencé, L. Scarabelli, J. Förstner, L. M. Liz-Marzán, F. J. García de Abajo, O. Stéphan, and M. Kociak, Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements, Nano Lett. 15(2), 1229 (2015)
CrossRef ADS Google scholar
[43]
R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, Electromagnetic density of states in complex plasmonic systems,Surf. Sci. Rep. 70(1), 1 (2015)
CrossRef ADS Google scholar
[44]
F. J. García de Abajo and M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100(10), 106804 (2008)
CrossRef ADS Google scholar
[45]
U. Hohenester, H. Ditlbacher, and J. R. Krenn, Electron-energy-loss spectra of plasmonic nanoparticles, Phys. Rev. Lett. 103(10), 106801 (2009)
CrossRef ADS Google scholar
[46]
M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, Local density of states, spectrum, and farfield interference of surface plasmon polaritons probed by cathodoluminescence, Phys. Rev. B 79(11), 113405 (2009)
CrossRef ADS Google scholar
[47]
A. Losquin and M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states, ACS Photonics 2(11), 1619 (2015)
CrossRef ADS Google scholar
[48]
C. Jeanguillaume and C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy 28(1–4), 252 (1989)
[49]
A. Gloter, A. Douiri, M. Tencé, and C. Colliex, Improving energy resolution of EELS spectra: An alternative to the monochromator solution, Ultramicroscopy 96(3–4), 385 (2003)
CrossRef ADS Google scholar
[50]
J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, Fabry–Pérot resonances in one-dimensional plasmonic nanostructures, Nano Lett. 9(6), 2372 (2009)
CrossRef ADS Google scholar
[51]
B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy, Phys. Rev. B 79(4), 041401 (2009)
CrossRef ADS Google scholar
[52]
T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Directional emission from plasmonic Yagi– Uda antennas probed by angle-resolved cathodoluminescence spectroscopy, Nano Lett. 11(9), 3779 (2011)
CrossRef ADS Google scholar
[53]
G. Kothleitner and F. Hofer, EELS performance measurements on a new high energy resolution imaging filter, Micron 34(3–5), 211 (2003)
CrossRef ADS Google scholar
[54]
A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, and B. McGinn, The GIF Quantum, a next generation postcolumn imaging energy filter, Ultramicroscopy 110(8), 962 (2010)
CrossRef ADS Google scholar
[55]
L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, Resonant wedge-plasmon modes in singlecrystalline gold nanoplatelets, Phys. Rev. B 83(19), 195433 (2011)
CrossRef ADS Google scholar
[56]
M. Kociak, O. Stéphan, M. G. Walls, M. Tencé, and C. Colliex, Scanning transmission electron microscopy: Imaging and analysis, New York: Springer New York, 2011, Chap. Spatially Resolved EELS: The Spectrum- Imaging Technique and Its Applications, pp 163–205
[57]
E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy, Nano Lett. 7(9), 2843 (2007)
CrossRef ADS Google scholar
[58]
J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms, Nano Lett. 10(3), 902 (2010)
CrossRef ADS Google scholar
[59]
F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Universal dispersion of surface plasmons in flat nanostructures, Nat. Commun. 5, 3604 (2014)
CrossRef ADS Google scholar
[60]
S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, Ultralocal modification of surface plasmons properties in silver nanocubes, Nano Lett. 12(3), 1288 (2012)
CrossRef ADS Google scholar
[61]
M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Lett. 9(1), 399 (2009)
CrossRef ADS Google scholar
[62]
E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence, Nano Lett. 11(10), 4265 (2011)
CrossRef ADS Google scholar
[63]
F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Dark plasmonic breathing modes in silver nanodisks, Nano Lett. 12(11), 5780 (2012)
CrossRef ADS Google scholar
[64]
M. Kuttge, W. Cai, F. J. García de Abajo, and A. Polman, Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy, Phys. Rev. B 80(3), 033409 (2009)
CrossRef ADS Google scholar
[65]
M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, Probing plasmonic breathing modes optically, Appl. Phys. Lett. 105(17), 171103 (2014)
CrossRef ADS Google scholar
[66]
D. Rossouw and G. A. Botton, Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett. 110(6), 066801 (2013)
CrossRef ADS Google scholar
[67]
M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M. Y. Han, Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep. 3, 1312 (2013)
CrossRef ADS Google scholar
[68]
E. P. Bellido, D. Rossouw, and G. A. Botton, Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics, Microsc. Microanal. 20(03), 767 (2014)
CrossRef ADS Google scholar
[69]
O. L. Krivanek, T. C. Lovejoy, M. F. Murfitt, G. Skone, P. E. Batson, and N. Dellby, Towards sub-10 meV energy resolution STEM-EELS, J. Phys. Conf. Ser. 522, 012023 (2014)
CrossRef ADS Google scholar
[70]
O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton, and P. A. Crozier, Vibrational spectroscopy in the electron microscope, Nature 514(7521), 209 (2014)
CrossRef ADS Google scholar
[71]
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
CrossRef ADS Google scholar
[72]
F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
CrossRef ADS Google scholar
[73]
D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11(4), 1499 (2011)
CrossRef ADS Google scholar
[74]
A. Losquin, S. Camelio, D. Rossouw, M. Besbes, F. Pailloux, D. Babonneau, G. A. Botton, J. J. Greffet, O. Stéphan, and M. Kociak, Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films, Phys. Rev. B 88(11), 115427 (2013)
CrossRef ADS Google scholar
[75]
M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. Yang, Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures, Sci. Rep. 4, 5537 (2014)
CrossRef ADS Google scholar
[76]
L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure, Nano Lett. 11(2), 568 (2011)
CrossRef ADS Google scholar
[77]
B. J. M. Brenny, T. Coenen, and A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals, J. Appl. Phys. 115(24), 244307 (2014)
CrossRef ADS Google scholar
[78]
J. A. Scholl, A. L. Koh, and J. A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles, Nature 483(7390), 421 (2012)
CrossRef ADS Google scholar
[79]
S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, Multipole plasmons and their disappearance in fewnanometre silver nanoparticles, Nat. Commun. 6, 8788 (2015)
CrossRef ADS Google scholar
[80]
S. Mazzucco, O. Stéphan, C. Colliex, I. Pastoriza- Santos, L. Liz-Marzán, J. García de Abajo, and M. Kociak, Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars, Eur. Phys. J. 54(3), 33512 (2011)
[81]
A. Maity, A. Maiti, P. Das, D. Senapati, and T. K. Chini, Effect of intertip coupling on the plasmonic behavior of individual multitipped gold nanoflower, ACS Photonics 1(12), 1290 (2014)
CrossRef ADS Google scholar
[82]
H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
CrossRef ADS Google scholar
[83]
T. Coenen, E. J. R. Vesseur, and A. Polman, Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas, ACS Nano 6(2), 1742 (2012)
CrossRef ADS Google scholar
[84]
F. von Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, and S. Linden, From isolated metaatoms to photonic metamaterials: evolution of the plasmonic nearfield, Nano Lett. 13(2), 703 (2013)
CrossRef ADS Google scholar
[85]
R. Verre, M. Svedendahl, N. Odebo Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, Directional light extinction and emission in a metasurface of tilted plasmonic nanopillars, Nano Lett. 16(1), 98 (2016)
CrossRef ADS Google scholar
[86]
M. Bosman, G. R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, Light splitting in nanoporous gold and silver, ACS Nano 6(1), 319 (2012)
CrossRef ADS Google scholar
[87]
D. T. Schoen, A. C. Atre, A. García-Etxarri, J. A. Dionne, and M. L. Brongersma, Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS, Nano Lett. 15(1), 120 (2015)
CrossRef ADS Google scholar
[88]
J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas, Nano Lett. 14(10), 5517 (2014)
CrossRef ADS Google scholar
[89]
R. A. Crowther, D. J. DeRosier, and A. Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 317, 319 (1970)
CrossRef ADS Google scholar
[90]
P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8(4), 271 (2009)
CrossRef ADS Google scholar
[91]
D. A. De Winter, M. N. Lebbink, D. F. Wiggers De Vries, J. A. Post, and M. R. Drury, FIB-SEM cathodoluminescence tomography: Practical and theoretical considerations, J. Microsc. 243(3), 315 (2011)
CrossRef ADS Google scholar
[92]
R. Leary, Z. Saghi, P. A. Midgley, and D. J. Holland, Compressed sensing electron tomography, Ultramicroscopy 131, 70 (2013)
CrossRef ADS Google scholar
[93]
O. Nicoletti, F. de la Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)
CrossRef ADS Google scholar
[94]
A. Hörl, A. Trügler, and U. Hohenester, Tomography of particle plasmon fields from electron energy loss spectroscopy, Phys. Rev. Lett. 111, 076801 (2013)
CrossRef ADS Google scholar
[95]
D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401(6755), 788 (1999)
CrossRef ADS Google scholar
[96]
E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process. Mag. 25(2), 21 (2008)
CrossRef ADS Google scholar
[97]
A. C. Atre, B. J. M. Brenny, T. Coenen, A. García- Etxarri, A. Polman, and J. A. Dionne, Nanoscale optical tomography with cathodoluminescence spectroscopy, Nat. Nanotechnol. 10(5), 429 (2015)
CrossRef ADS Google scholar
[98]
I. Arslan, J. R. Tong, and P. A. Midgley, Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials, Ultramicroscopy 106(11–12), 994 (2006)
CrossRef ADS Google scholar
[99]
M. Lyra and A. Ploussi, Filtering in SPECT image reconstruction, Int. J. Biomed. Imaging 2011, 693795 (2011)
CrossRef ADS Google scholar
[100]
X. Wang, R. Lockwood, M. Malac, H. Furukawa, P. Li, and A. Meldrum, Reconstruction and visualization of nanoparticle composites by transmission electron tomography, Ultramicroscopy 113, 96 (2012)
CrossRef ADS Google scholar
[101]
A. Hörl, A. Trügler, and U. Hohenester, Full threedimensonal reconstruction of the dyadic green tensor from electron energy loss spectroscopy of plasmonic nanoparticles, ACS Photonics 2(10), 1429 (2015)
CrossRef ADS Google scholar
[102]
G. Haberfehlner, A. Trügler, F. P. Schmidt, A. Hörl, F. Hofer, U. Hohenester, and G. Kothleitner, Correlated 3D nanoscale mapping and simulation of coupled plasmonic nanoparticles, Nano Lett. 15(11), 7726 (2015)
CrossRef ADS Google scholar
[103]
S. M. Collins, E. Ringe, M. Duchamp, Z. Saghi, R. E. Dunin-Borkowski, and P. A. Midgley, Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy, ACS Photonics 2(11), 1628 (2015)
CrossRef ADS Google scholar
[104]
F. J. García de Abajo and M. Kociak, Electron energygain spectroscopy, New J. Phys. 10(7), 073035 (2008)
CrossRef ADS Google scholar
[105]
B. Barwick, D. J. Flannigan, and A. H. Zewail, Photon-induced near-field electron microscopy, Nature 462(7275), 902 (2009)
CrossRef ADS Google scholar
[106]
B. J. M. Brenny, D. van Dam, C. I. Osorio, J. Gómez Rivas, and A. Polman, Azimuthally polarized cathodoluminescence from InP nanowires, Appl. Phys. Lett. 107(20), 201110 (2015)
CrossRef ADS Google scholar
[107]
C. I. Osorio, T. Coenen, B. J. M. Brenny, A. Polman, and A. F. Koenderink, Angle-resolved cathodoluminescence imaging polarimetry, ACS Photonics 3(1), 147 (2016)
CrossRef ADS Google scholar
[108]
H. G. Berry, G. Gabrielse, and A. E. Livingston, Measurement of the Stokes parameters of light, Appl. Opt. 16(12), 3200 (1977)
CrossRef ADS Google scholar
[109]
C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, A. D. Martino, C. Vannuffel, and C. Constancias, Overlay measurements by Mueller polarimetry in back focal plane, MOEMS 10(3), 033017 (2011)
CrossRef ADS Google scholar
[110]
G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, Metafocusing by a Metaspiral Plasmonic Lens, Nano Lett. 15(9), 5739 (2015)
CrossRef ADS Google scholar
[111]
M. Uchida and A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature 464(7289), 737 (2010)
CrossRef ADS Google scholar
[112]
J. Verbeeck, H. Tian, and P. Schattschneider, Production and application of electron vortex beams, Nature 467(7313), 301 (2010)
CrossRef ADS Google scholar
[113]
B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Electron vortex beams with high quanta of orbital angular momentum, Science 331(6014), 192 (2011)
CrossRef ADS Google scholar
[114]
K. Saitoh, Y. Hasegawa, K. Hirakawa, N. Tanaka, and M. Uchida, Measuring the orbital angular momentum of electron vortex beams using a forked grating, Phys. Rev. Lett. 111(7), 074801 (2013)
CrossRef ADS Google scholar
[115]
L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, Exploiting lens aberrations to create electron-vortex beams, Phys. Rev. Lett. 111(6), 064801 (2013)
CrossRef ADS Google scholar
[116]
A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, Magnetic monopole field exposed by electrons, Nat. Phys. 10(1), 26 (2014)
CrossRef ADS Google scholar
[117]
J. Handali, P. Shakya, and B. Barwick, Creating electron vortex beams with light, Opt. Express 23(4), 5236 (2015)
CrossRef ADS Google scholar
[118]
J. Rusz and S. Bhowmick, Boundaries for efficient use of electron vortex beams to measure magnetic properties, Phys. Rev. Lett. 111(10), 105504 (2013)
CrossRef ADS Google scholar
[119]
P. Schattschneider, S. Löffler, M. Stöger-Pollach, and J. Verbeeck, Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81 (2014)
CrossRef ADS Google scholar
[120]
Z. Mohammadi, C. P. Van Vlack, S. Hughes, J. Bornemann, and R. Gordon, Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons, Opt. Express 20(14), 15024 (2012)
CrossRef ADS Google scholar
[121]
X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, Angular momentum-induced circular dichroism in nonchiral nanostructures, Nat. Commun. 5, 4922 (2014)
CrossRef ADS Google scholar
[122]
A. Asenjo-Garcia and F. J. García de Abajo, Dichroism in the interaction between vortex electron beams, plasmons, and molecules, Phys. Rev. Lett. 113(6), 066102 (2014)
CrossRef ADS Google scholar
[123]
S. Meuret, L. H. G. Tizei, T. Cazimajou, R. Bourrellier, H. C. Chang, F. Treussart, and M. Kociak, Photon bunching in cathodoluminescence, Phys. Rev. Lett. 114(19), 197401 (2015)
CrossRef ADS Google scholar
[124]
M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, Probing carrier dynamics in nanostructures by picosecond cathodoluminescence, Nature 438(7067), 479 (2005)
CrossRef ADS Google scholar
[125]
T. Onuma, Y. Kagamitani, K. Hazu, T. Ishiguro, T. Fukuda, and S. F. Chichibu, Femtosecond-laserdriven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN, Rev. Sci. Instrum. 83(4), 043905 (2012)
CrossRef ADS Google scholar
[126]
F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)
CrossRef ADS Google scholar
[127]
O. Schmidt, G. H. Fecher, Y. Hwu, and G. Schönhense, The spatial distribution of non-linear effects in multi-photon photoemission from metallic adsorbates on Si(111), Surf. Sci. 482–485, 687 (2001)
CrossRef ADS Google scholar
[128]
M. Merschdorf, C. Kennerknecht, and W. Pfeiffer, Collective and single-particle dynamics in time-resolved two-photon photoemission, Phys. Rev. B 70(19), 193401 (2004)
CrossRef ADS Google scholar
[129]
C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Mapping surface plasmon polariton propagation via counter-propagating light pulses, Opt. Express 20(12), 12877 (2012)
CrossRef ADS Google scholar
[130]
L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, and P. Royer, Short range plasmon resonators probed by photoemission electron microscopy, Nano Lett. 8(3), 935 (2008)
CrossRef ADS Google scholar
[131]
C. Wiemann, D. Bayer, M. Rohmer, M. Aeschlimann, and M. Bauer, Local 2PPE-yield enhancement in a defined periodic silver nanodisk array, Surf. Sci. 601(20), 4714 (2007)
CrossRef ADS Google scholar
[132]
E. Mårsell, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, A. Mikkelsen, and A. Losquin, Direct subwavelength imaging and control of near-field localization in individual silver nanocubes, Appl. Phys. Lett. 107(20), 201111 (2015)
CrossRef ADS Google scholar
[133]
J. T. Stuckless and M. Moskovits, Enhanced two-photon photoemission from coldly deposited silver films, Phys. Rev. B 40(14), 9997 (1989)
CrossRef ADS Google scholar
[134]
M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, Photoemission electron microscopy as a tool for the investigation of optical near fields, Phys. Rev. Lett. 95(4), 047601 (2005)
CrossRef ADS Google scholar
[135]
T. Leißner, C. Lemke, J. Fiutowski, J. W. Radke, A. Klick, L. Tavares, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides, Phys. Rev. Lett. 111(4), 046802 (2013)
CrossRef ADS Google scholar
[136]
C. Lemke, T. Leißner, A. Klick, J. Fiutowski, J. W. Radke, M. Thomaschewski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, The complex dispersion relation of surface plasmon polaritons at gold/parahexaphenylene interfaces, Appl. Phys. B 116(3), 585 (2014)
CrossRef ADS Google scholar
[137]
N. M. Buckanie, J. Göhre, P. Zhou, D. von der Linde, M. Horn-von Hoegen, and F. J. Meyer Zu Heringdorf, Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses, J. Phys.: Condens. Matter 21(31), 314003 (2009)
CrossRef ADS Google scholar
[138]
L. Douillard and F. Charra, Photoemission electron microscopy, a tool for plasmonics, J. Electron Spectrosc. Relat. Phenom. 189(Suppl.), 24 (2013)
CrossRef ADS Google scholar
[139]
A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film, Nano Lett. 5(6), 1123 (2005)
CrossRef ADS Google scholar
[140]
E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, and A. Mikkelsen, Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna, Nano Lett. 15(10), 6601 (2015)
CrossRef ADS Google scholar
[141]
Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, Ultrafast imaging of surface plasmons propagating on a gold surface, Nano Lett. 15(5), 3472 (2015)
CrossRef ADS Google scholar
[142]
M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, Spatiotemporal control of nanooptical excitations, Proc. Natl. Acad. Sci. USA 107(12), 5329 (2010)
CrossRef ADS Google scholar
[143]
O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, Time-resolved two photon photoemission electron microscopy, Appl. Phys. B 74(3), 223 (2002)
CrossRef ADS Google scholar
[144]
J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission, Phys. Rev. Lett. 85(14), 2921 (2000)
CrossRef ADS Google scholar
[145]
M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. Krenn, H. Ditlbacher, F. Aussenegg, and A. Liebsch, Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73(4), 305 (2001)
CrossRef ADS Google scholar
[146]
B. Lamprecht, A. Leitner, and F. Aussenegg, SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 68(3), 419 (1999)
CrossRef ADS Google scholar
[147]
B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecondresolution third-harmonic generation, Phys. Rev. Lett. 83(21), 4421 (1999)
CrossRef ADS Google scholar
[148]
M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy, Appl. Phys. A 88(3), 473 (2007)
CrossRef ADS Google scholar
[149]
F. J. M. zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. H. von Hoegen, Femtosecond photoemission microscopy, Surf. Sci. 601, 4700 (2007)
CrossRef ADS Google scholar
[150]
A. Kubo, N. Pontius, and H. Petek, Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface, Nano Lett. 7(2), 470 (2007)
CrossRef ADS Google scholar
[151]
Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy, Light Sci. Appl. 2(12), e118 (2013)
CrossRef ADS Google scholar
[152]
E. Lorek, E. Mårsell, A. Losquin, M. Miranda, A. Harth, C. Guo, R. Svärd, C. L. Arnold, A. L’Huiller, A. Mikkelsen, and J. Mauritsson, Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas, Opt. Express 23(24), 31460 (2015)
CrossRef ADS Google scholar
[153]
C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices, Nano Lett. 13(3), 1053 (2013)
CrossRef ADS Google scholar
[154]
C. Lemke, T. Leissner, A. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, The interplay between localized and propagating plasmonic excitations tracked in space and time, Nano Lett. 14(5), 2431 (2014)
CrossRef ADS Google scholar
[155]
Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy, ACS Nano 10(3), 3835 (2016)
CrossRef ADS Google scholar
[156]
P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F. J. Meyer zu Heringdorf, Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons, Plasmonics 9(6), 1401 (2014)
CrossRef ADS Google scholar
[157]
D. Podbiel, P. Kahl, and F. J. Meyer zu Heringdorf, Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump–probe experiment with adjustable polarization, Appl. Phys. B 122(4), 1 (2016)
CrossRef ADS Google scholar
[158]
M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, Attosecond nanoplasmonic-field microscope, Nat. Photonics 1(9), 539 (2007)
CrossRef ADS Google scholar
[159]
M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Adaptive subwavelength control of nanooptical fields, Nature 446(7133), 301 (2007)
CrossRef ADS Google scholar
[160]
M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P.Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, Coherent twodimensional nanoscopy, Science 333(6050), 1723 (2011)
CrossRef ADS Google scholar
[161]
M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, Perfect absorption in nanotextured thin films via Anderson-localized photon modes, Nat. Photonics 9(10), 663 (2015)
CrossRef ADS Google scholar
[162]
T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72(2), 545 (2000)
CrossRef ADS Google scholar
[163]
P. Agostini and L. F. DiMauro, The physics of attosecond light pulses, Rep. Prog. Phys. 67(6), 813 (2004)
CrossRef ADS Google scholar
[164]
E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Direct measurement of light waves, Science 305(5688), 1267 (2004)
CrossRef ADS Google scholar
[165]
E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, Numerical simulation of attosecond nanoplasmonic streaking, New J. Phys. 13(8), 083003 (2011)
CrossRef ADS Google scholar
[166]
A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains, Rev. Sci. Instrum. 80(12), 123703 (2009)
CrossRef ADS Google scholar
[167]
S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses, Appl. Phys. Lett. 100(5), 051904 (2012)
CrossRef ADS Google scholar
[168]
E. Mårsell, C. L. Arnold, E. Lorek, D. Guenot, T. Fordell, M. Miranda, J. Mauritsson, H. Xu, A. L’Huillier, and A. Mikkelsen, Secondary electron imaging of nanostructures using extreme ultra-violet attosecond pulse trains and infra-red femtosecond pulses, Ann. Phys. 525(1–2), 162 (2013)
CrossRef ADS Google scholar
[169]
S. H. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. F. Kling, U. Kleineberg, E. Mårsell, C. L. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy- “ATTO-PEEM”, in: Attosecond Nanophysics, Wiley-VCH Verlag GmbH and Co. KGaA, 2014, pp 325–364
[170]
B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, and M. F. Kling, Attosecond nanoscale nearfield sampling, Nat. Commun. 7, 11717 (2016)
CrossRef ADS Google scholar
[171]
H. Boersch, J. Geiger, and W. Stickel, Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration, Phys. Rev. Lett. 17(7), 379 (1966)
CrossRef ADS Google scholar
[172]
A. Howie, Electrons and photons: Exploiting the connection, Inst. Phys. Conf. Ser. 161, 311 (1999)
[173]
A. Howie, Photon-assisted electron energy loss spectroscopy and ultrafast imaging, Microsc. Microanal. 15(4), 314 (2009)
CrossRef ADS Google scholar
[174]
A. Howie, Photon interactions for electron microscopy applications, Eur. Phys. J. Appl. Phys. 54, 33502 (2011)
CrossRef ADS Google scholar
[175]
A. Howie, Stimulated excitation electron microscopy and spectroscopy, Ultramicroscopy 151, 116 (2015)
CrossRef ADS Google scholar
[176]
L. Piazza, T. T. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field, Nat. Commun. 6, 6407 (2015)
CrossRef ADS Google scholar
[177]
D. J. Flannigan, B. Barwick, and A. H. Zewail, Biological imaging with 4D ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 107(22), 9933 (2010)
CrossRef ADS Google scholar
[178]
F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields, Nano Lett. 10(5), 1859 (2010)
CrossRef ADS Google scholar
[179]
A. Yurtsever and A. H. Zewail, Direct visualization of near-fields in nanoplasmonics and nanophotonics, Nano Lett. 12(6), 3334 (2012)
CrossRef ADS Google scholar
[180]
A. Yurtsever, J. S. Baskin, and A. H. Zewail, Entangled nanoparticles: Discovery by visualization in 4D electron microscopy, Nano Lett. 12(9), 5027 (2012)
CrossRef ADS Google scholar
[181]
L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)
CrossRef ADS Google scholar
[182]
M. T. Hassan, H. Liu, J. S. Baskin, and A. H. Zewail, Photon gating in four-dimensional ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 112(42), 12944 (2015)
CrossRef ADS Google scholar
[183]
T. T. A. Lummen, R. J. Lamb, G. Berruto, T. Lagrange, L. Dal Negro, F. J. García de Abajo, D. McGrouther, B. Barwick, and F. Carbone, Shaping, imaging and controlling plasmonic interference fields at buried interfaces, arXiv: 1604.01232 (2016)
[184]
A. Yurtsever, R. M. van der Veen, and A. H. Zewail, Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335(6064), 59 (2012)
CrossRef ADS Google scholar
[185]
A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521(7551), 200 (2015)
CrossRef ADS Google scholar
[186]
S. T. Park, M. Lin, and A. H. Zewail, Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental, New J. Phys. 12(12), 123028 (2010)
CrossRef ADS Google scholar
[187]
D. A. Plemmons, S. Tae Park, A. H. Zewail, and D. J. Flannigan, Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy, Ultramicroscopy 146, 97 (2014)
CrossRef ADS Google scholar
[188]
B. Shore and J. Eberly, Analytic approximations in multi-level excitation theory, Opt. Commun. 24(1), 83 (1978)
CrossRef ADS Google scholar
[189]
F. J. García de Abajo, B. Barwick, and F. Carbone, Electron diffraction by plasmon waves, arXiv: 1603.07551 (2016)
[190]
N. Talebi, W. Sigle, R. Vogelgesang, and P. van Aken, Numerical simulations of interference effects in photonassisted electron energy-loss spectroscopy, New J. Phys. 15(5), 053013 (2013)
CrossRef ADS Google scholar
[191]
H. S. Park, J. S. Baskin, O. H. Kwon, and A. H. Zewail, Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy, Nano Lett. 7(9), 2545 (2007)
CrossRef ADS Google scholar
[192]
C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars, Nano Lett. 11(2), 402 (2011)
CrossRef ADS Google scholar
[193]
H. Liu, J. S. Baskin, and A. H. Zewail, Infrared PINEM developed by diffraction in 4D UEM, Proc. Natl. Acad. Sci. USA 113(8), 2041 (2016)
CrossRef ADS Google scholar
[194]
B. Barwick and A. H. Zewail, Photonics and plasmonics in 4D ultrafast electron microscopy, ACS Photonics 2(10), 1391 (2015)
CrossRef ADS Google scholar
[195]
A. Gliserin, M. Walbran, F. Krausz, and P. Baum, Subphonon- period compression of electron pulses for atomic diffraction, Nat. Commun. 6, 8723 (2015)
CrossRef ADS Google scholar
[196]
E. Fill, L. Veisz, A. Apolonski, and F. Krausz, Sub-fs electron pulses for ultrafast electron diffraction, New J. Phys. 8(11), 272 (2006)
CrossRef ADS Google scholar
[197]
G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, Design and implementation of a flexible beamline for fs electron diffraction experiments, Nucl. Instrum. Methods Phys. Res. Sect. A 691, 113 (2012)
CrossRef ADS Google scholar
[198]
P. Baum and A. H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, Proc. Natl. Acad. Sci. USA 104(47), 18409 (2007)
CrossRef ADS Google scholar
[199]
S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, Temporal lenses for attosecond and femtosecond electron pulses, Proc. Natl. Acad. Sci. USA 106(26), 10558 (2009)
CrossRef ADS Google scholar
[200]
P. Rudawski, A. Harth, C. Guo, E. Lorek, M. Miranda, C. M. Heyl, E. W. Larsen, J. Ahrens, O. Prochnow, T. Binhammer, U. Morgner, J. Mauritsson, A. L’ Huillier, and C. L. Arnold, Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system, Eur. Phys. J. D 69, 70 (2015)
CrossRef ADS Google scholar
[201]
V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzán, N. I. Zheludev, M. Kociak, and F. J. García de Abajo, Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study, Nano Lett. 12(8), 4172 (2012)
CrossRef ADS Google scholar
[202]
P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, Photoelectron imaging of modal interference in plasmonic whispering gallery cavities, Opt. Express 23(25), 31619 (2015)
CrossRef ADS Google scholar
[203]
E. Ringe, C. J. DeSantis, S. M. Collins, M. Duchamp, R. E. Dunin-Borkowski, S. E. Skrabalak, and P. A. Midgley, Resonances of nanoparticles with poor plasmonic metal tips, Sci. Rep. 5, 17431 (2015)
CrossRef ADS Google scholar
[204]
M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C. W. Qiu, and K. P. Loh, Visible surface plasmon modes in single Bi2Te3 nanoplate, Nano Lett. 15(12), 8331 (2015)
CrossRef ADS Google scholar
[205]
J. A. Hachtel, C. Marvinney, A. Mouti, D. Mayo, R. Mu, S. J. Pennycook, A. R. Lupini, M. F. Chisholm, R. F. Haglund, and S. T. Pantelides, Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope, Nanotechnology 27(15), 155202 (2016)
CrossRef ADS Google scholar
[206]
T. Coenen, D. T. Schoen, B. J. M. Brenny, A. Polman, and M. L. Brongersma, Combined electron energyloss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures, Phys. Rev. B 93(19), 195429 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(30037 KB)

Accesses

Citations

Detail

Sections
Recommended

/