Electron microscopy methods for space-, energy-, and time-resolved plasmonics
Arthur Losquin, Tom T. A. Lummen
Electron microscopy methods for space-, energy-, and time-resolved plasmonics
Nanoscale plasmonic systems combine the advantages of optical frequencies with those of small spatial scales, circumventing the limitations of conventional photonic systems by exploiting the strong field confinement of surface plasmons. As a result of this miniaturization to the nanoscale, electron microscopy techniques are the natural investigative methods of choice. Recent years have seen the development of a number of electron microscopy techniques that combine the use of electrons and photons to enable unprecedented views of surface plasmons in terms of combined spatial, energy, and time resolution. This review aims to provide a comparative survey of these different approaches from an experimental viewpoint by outlining their respective experimental domains of suitability and highlighting their complementary strengths and limitations as applied to plasmonics in particular.
plasmonics / electron microscopy / Electron Energy Loss Spectroscopy (EELS) / cathodoluminescence / Photoemission Electron Microscopy (PEEM) / Photo-Induced Near-field Electron Microscopy (PINEM) / Electron Energy Gain Spectroscopy (EEGS)
[1] |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (6950), 824 (2003)
CrossRef
ADS
Google scholar
|
[2] |
E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
CrossRef
ADS
Google scholar
|
[3] |
L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2012, p. 564
CrossRef
ADS
Google scholar
|
[4] |
M. S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope, Appl. Phys. Lett. 76(21), 3130 (2000)
CrossRef
ADS
Google scholar
|
[5] |
N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Metallized tip amplification of near-field Raman scattering, Opt. Commun. 183(1–4), 333 (2000)
CrossRef
ADS
Google scholar
|
[6] |
P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. V. Duyne, Surface-Enhanced Raman Spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
CrossRef
ADS
Google scholar
|
[7] |
M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)
CrossRef
ADS
Google scholar
|
[8] |
N. F. V. Hulst, N. P. de Boer, and B. Bölger, An evanescent-field optical microscope, J. Microsc. 163(2), 117 (1991)
CrossRef
ADS
Google scholar
|
[9] |
H. Heinzelmann and D. W. Pohl, Scanning near-field optical microscopy, Appl. Phys. A 59(2), 89 (1994)
CrossRef
ADS
Google scholar
|
[10] |
C. Bohm, J. Bangert, W. Mertin, and E. Kubalek, Time resolved near-field scanning optical microscopy, J. Phys. D Appl. Phys. 27(10), 2237 (1994)
CrossRef
ADS
Google scholar
|
[11] |
H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94(7), 073903 (2005)
CrossRef
ADS
Google scholar
|
[12] |
P. B. Johnson and R. W. Christy, Optical constants of the Noble metals, Phys. Rev. B 6(12), 4370 (1972)
CrossRef
ADS
Google scholar
|
[13] |
A. Asenjo-Garcia and F. J. García de Abajo, Plasmon electron energy-gain spectroscopy, New J. Phys. 15(10), 103021 (2013)
CrossRef
ADS
Google scholar
|
[14] |
F. J. García de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82(1), 209 (2010)
CrossRef
ADS
Google scholar
|
[15] |
E. J. R. Vesseur, J. Aizpurua, T. Coenen, A. Reyes- Coronado, P. E. Batson, and A. Polman, Plasmonic excitation and manipulation with an electron beam, MRS Bull. 37(08), 752 (2012)
CrossRef
ADS
Google scholar
|
[16] |
M. Kociak and O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope, Chem. Soc. Rev. 43(11), 3865 (2014)
CrossRef
ADS
Google scholar
|
[17] |
C. Colliex, M. Kociak, and O. Stéphan, Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale, Ultramicroscopy 162, A1 (2016)
CrossRef
ADS
Google scholar
|
[18] |
C. Cherqui, N. Thakkar, G. Li, J. P. Camden, and D. Masiello, Characterizing localized surface plasmons using electron energy-loss spectroscopy, arXiv: 1509.08430v2 (2015)
|
[19] |
R. H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106(5), 874 (1957)
CrossRef
ADS
Google scholar
|
[20] |
C. J. Powell and J. B. Swan, Origin of the characteristic electron energy losses in aluminum, Phys. Rev. 115(4), 869 (1959)
CrossRef
ADS
Google scholar
|
[21] |
E. A. Stern and R. A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. 120(1), 130 (1960)
CrossRef
ADS
Google scholar
|
[22] |
R. A. Ferrell, Predicted radiation of plasma oscillations in metal films, Phys. Rev. 111(5), 1214 (1958)
CrossRef
ADS
Google scholar
|
[23] |
W. Steinmann, Experimental verification of radiation of plasma oscillations in thin silver films, Phys. Rev. Lett. 5(10), 470 (1960)
CrossRef
ADS
Google scholar
|
[24] |
P. Batson, Surface plasmon coupling in clusters of small spheres, Phys. Rev. Lett. 49(13), 936 (1982)
CrossRef
ADS
Google scholar
|
[25] |
P. Batson, A new surface plasmon resonance in clusters of small aluminum spheres, Ultramicroscopy 9(3), 277 (1982)
CrossRef
ADS
Google scholar
|
[26] |
J. Cowley, Surface energies and surface structure of small crystals studied by use of a stem instrument, Surf. Sci. 114(2–3), 587 (1982)
CrossRef
ADS
Google scholar
|
[27] |
L. Marks, Observation of the image force for fast electrons near an MgO surface, Solid State Commun. 43(10), 727 (1982)
CrossRef
ADS
Google scholar
|
[28] |
M. Scheinfein, A. Muray, and M. Isaacson, Electron energy loss spectroscopy across a metal-insulator interface at sub-nanometer spatial resolution, Ultramicroscopy 16(2), 233 (1985)
CrossRef
ADS
Google scholar
|
[29] |
A. Howie and R. Milne, Excitations at interfaces and small particles, Ultramicroscopy 18(1–4), 427 (1985)
|
[30] |
M. Achèche, C. Colliex, H. Kohl, A. Nourtier, and P. Trebbia, Theoretical and experimental study of plasmon excitations in small metallic spheres, Ultramicroscopy 20(1–2), 99 (1986)
CrossRef
ADS
Google scholar
|
[31] |
Z. Wang and J. Cowley, Size and shape dependence of the surface plasmon frequencies for supported metal particle systems, Ultramicroscopy 23(1), 97 (1987)
CrossRef
ADS
Google scholar
|
[32] |
D. Ugarte, C. Colliex, and P. Trebbia, Surfaceand interface-plasmon modes on small semiconducting spheres, Phys. Rev. B 45(8), 4332 (1992)
CrossRef
ADS
Google scholar
|
[33] |
P. Moreau, N. Brun, C. A. Walsh, C. Colliex, and A. Howie, Relativistic effects in electron-energy-lossspectroscopy observations of the Si/SiO2 interface plasmon peak, Phys. Rev. B 56(11), 6774 (1997)
CrossRef
ADS
Google scholar
|
[34] |
N. Yamamoto, K. Araya, and F. García de Abajo, Photon emission from silver particles induced by a highenergy electron beam, Phys. Rev. B 64(20), 205419 (2001)
CrossRef
ADS
Google scholar
|
[35] |
J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza- Santos, L. M. Liz-Marzán, and C. Colliex, Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3(5), 348 (2007)
CrossRef
ADS
Google scholar
|
[36] |
M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam, Nanotechnology 18(16), 165505 (2007)
CrossRef
ADS
Google scholar
|
[37] |
J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy, Appl. Phys. Lett. 88(22), 221111 (2006)
CrossRef
ADS
Google scholar
|
[38] |
M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, Generation of traveling surface plasmon waves by free-electron impact, Nano Lett. 6(6), 1113 (2006)
CrossRef
ADS
Google scholar
|
[39] |
M. V. Bashevoy, F. Jonsson, K. F. Macdonald, Y. Chen, and N. I. Zheludev, Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution, Opt. Express 15(18), 11313 (2007)
CrossRef
ADS
Google scholar
|
[40] |
F. J. García de Abajo, Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam, Phys. Rev. B 59(4), 3095 (1999)
CrossRef
ADS
Google scholar
|
[41] |
G. Boudarham and M. Kociak, Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes, Phys. Rev. B 85(24), 245447 (2012)
CrossRef
ADS
Google scholar
|
[42] |
A. Losquin, L. F. Zagonel, V. Myroshnychenko, B. Rodríguez-González, M. Tencé, L. Scarabelli, J. Förstner, L. M. Liz-Marzán, F. J. García de Abajo, O. Stéphan, and M. Kociak, Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements, Nano Lett. 15(2), 1229 (2015)
CrossRef
ADS
Google scholar
|
[43] |
R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, Electromagnetic density of states in complex plasmonic systems,Surf. Sci. Rep. 70(1), 1 (2015)
CrossRef
ADS
Google scholar
|
[44] |
F. J. García de Abajo and M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100(10), 106804 (2008)
CrossRef
ADS
Google scholar
|
[45] |
U. Hohenester, H. Ditlbacher, and J. R. Krenn, Electron-energy-loss spectra of plasmonic nanoparticles, Phys. Rev. Lett. 103(10), 106801 (2009)
CrossRef
ADS
Google scholar
|
[46] |
M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, Local density of states, spectrum, and farfield interference of surface plasmon polaritons probed by cathodoluminescence, Phys. Rev. B 79(11), 113405 (2009)
CrossRef
ADS
Google scholar
|
[47] |
A. Losquin and M. Kociak, Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states, ACS Photonics 2(11), 1619 (2015)
CrossRef
ADS
Google scholar
|
[48] |
C. Jeanguillaume and C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy 28(1–4), 252 (1989)
|
[49] |
A. Gloter, A. Douiri, M. Tencé, and C. Colliex, Improving energy resolution of EELS spectra: An alternative to the monochromator solution, Ultramicroscopy 96(3–4), 385 (2003)
CrossRef
ADS
Google scholar
|
[50] |
J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, Fabry–Pérot resonances in one-dimensional plasmonic nanostructures, Nano Lett. 9(6), 2372 (2009)
CrossRef
ADS
Google scholar
|
[51] |
B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy, Phys. Rev. B 79(4), 041401 (2009)
CrossRef
ADS
Google scholar
|
[52] |
T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Directional emission from plasmonic Yagi– Uda antennas probed by angle-resolved cathodoluminescence spectroscopy, Nano Lett. 11(9), 3779 (2011)
CrossRef
ADS
Google scholar
|
[53] |
G. Kothleitner and F. Hofer, EELS performance measurements on a new high energy resolution imaging filter, Micron 34(3–5), 211 (2003)
CrossRef
ADS
Google scholar
|
[54] |
A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, and B. McGinn, The GIF Quantum, a next generation postcolumn imaging energy filter, Ultramicroscopy 110(8), 962 (2010)
CrossRef
ADS
Google scholar
|
[55] |
L. Gu, W. Sigle, C. T. Koch, B. Ögüt, P. A. van Aken, N. Talebi, R. Vogelgesang, J. Mu, X. Wen, and J. Mao, Resonant wedge-plasmon modes in singlecrystalline gold nanoplatelets, Phys. Rev. B 83(19), 195433 (2011)
CrossRef
ADS
Google scholar
|
[56] |
M. Kociak, O. Stéphan, M. G. Walls, M. Tencé, and C. Colliex, Scanning transmission electron microscopy: Imaging and analysis, New York: Springer New York, 2011, Chap. Spatially Resolved EELS: The Spectrum- Imaging Technique and Its Applications, pp 163–205
|
[57] |
E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy, Nano Lett. 7(9), 2843 (2007)
CrossRef
ADS
Google scholar
|
[58] |
J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms, Nano Lett. 10(3), 902 (2010)
CrossRef
ADS
Google scholar
|
[59] |
F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Universal dispersion of surface plasmons in flat nanostructures, Nat. Commun. 5, 3604 (2014)
CrossRef
ADS
Google scholar
|
[60] |
S. Mazzucco, N. Geuquet, J. Ye, O. Stéphan, W. Van Roy, P. Van Dorpe, L. Henrard, and M. Kociak, Ultralocal modification of surface plasmons properties in silver nanocubes, Nano Lett. 12(3), 1288 (2012)
CrossRef
ADS
Google scholar
|
[61] |
M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Lett. 9(1), 399 (2009)
CrossRef
ADS
Google scholar
|
[62] |
E. S. Barnard, T. Coenen, E. J. R. Vesseur, A. Polman, and M. L. Brongersma, Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence, Nano Lett. 11(10), 4265 (2011)
CrossRef
ADS
Google scholar
|
[63] |
F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Dark plasmonic breathing modes in silver nanodisks, Nano Lett. 12(11), 5780 (2012)
CrossRef
ADS
Google scholar
|
[64] |
M. Kuttge, W. Cai, F. J. García de Abajo, and A. Polman, Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy, Phys. Rev. B 80(3), 033409 (2009)
CrossRef
ADS
Google scholar
|
[65] |
M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, Probing plasmonic breathing modes optically, Appl. Phys. Lett. 105(17), 171103 (2014)
CrossRef
ADS
Google scholar
|
[66] |
D. Rossouw and G. A. Botton, Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding, Phys. Rev. Lett. 110(6), 066801 (2013)
CrossRef
ADS
Google scholar
|
[67] |
M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M. Y. Han, Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep. 3, 1312 (2013)
CrossRef
ADS
Google scholar
|
[68] |
E. P. Bellido, D. Rossouw, and G. A. Botton, Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics, Microsc. Microanal. 20(03), 767 (2014)
CrossRef
ADS
Google scholar
|
[69] |
O. L. Krivanek, T. C. Lovejoy, M. F. Murfitt, G. Skone, P. E. Batson, and N. Dellby, Towards sub-10 meV energy resolution STEM-EELS, J. Phys. Conf. Ser. 522, 012023 (2014)
CrossRef
ADS
Google scholar
|
[70] |
O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton, and P. A. Crozier, Vibrational spectroscopy in the electron microscope, Nature 514(7521), 209 (2014)
CrossRef
ADS
Google scholar
|
[71] |
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
CrossRef
ADS
Google scholar
|
[72] |
F. J. García de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
CrossRef
ADS
Google scholar
|
[73] |
D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11(4), 1499 (2011)
CrossRef
ADS
Google scholar
|
[74] |
A. Losquin, S. Camelio, D. Rossouw, M. Besbes, F. Pailloux, D. Babonneau, G. A. Botton, J. J. Greffet, O. Stéphan, and M. Kociak, Experimental evidence of nanometer-scale confinement of plasmonic eigenmodes responsible for hot spots in random metallic films, Phys. Rev. B 88(11), 115427 (2013)
CrossRef
ADS
Google scholar
|
[75] |
M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. W. Qiu, and J. K. Yang, Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures, Sci. Rep. 4, 5537 (2014)
CrossRef
ADS
Google scholar
|
[76] |
L. F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F. H. Julien, R. Songmuang, and M. Kociak, Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure, Nano Lett. 11(2), 568 (2011)
CrossRef
ADS
Google scholar
|
[77] |
B. J. M. Brenny, T. Coenen, and A. Polman, Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals, J. Appl. Phys. 115(24), 244307 (2014)
CrossRef
ADS
Google scholar
|
[78] |
J. A. Scholl, A. L. Koh, and J. A. Dionne, Quantum plasmon resonances of individual metallic nanoparticles, Nature 483(7390), 421 (2012)
CrossRef
ADS
Google scholar
|
[79] |
S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, and N. Stenger, Multipole plasmons and their disappearance in fewnanometre silver nanoparticles, Nat. Commun. 6, 8788 (2015)
CrossRef
ADS
Google scholar
|
[80] |
S. Mazzucco, O. Stéphan, C. Colliex, I. Pastoriza- Santos, L. Liz-Marzán, J. García de Abajo, and M. Kociak, Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars, Eur. Phys. J. 54(3), 33512 (2011)
|
[81] |
A. Maity, A. Maiti, P. Das, D. Senapati, and T. K. Chini, Effect of intertip coupling on the plasmonic behavior of individual multitipped gold nanoflower, ACS Photonics 1(12), 1290 (2014)
CrossRef
ADS
Google scholar
|
[82] |
H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
CrossRef
ADS
Google scholar
|
[83] |
T. Coenen, E. J. R. Vesseur, and A. Polman, Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas, ACS Nano 6(2), 1742 (2012)
CrossRef
ADS
Google scholar
|
[84] |
F. von Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, and S. Linden, From isolated metaatoms to photonic metamaterials: evolution of the plasmonic nearfield, Nano Lett. 13(2), 703 (2013)
CrossRef
ADS
Google scholar
|
[85] |
R. Verre, M. Svedendahl, N. Odebo Länk, Z. J. Yang, G. Zengin, T. J. Antosiewicz, and M. Käll, Directional light extinction and emission in a metasurface of tilted plasmonic nanopillars, Nano Lett. 16(1), 98 (2016)
CrossRef
ADS
Google scholar
|
[86] |
M. Bosman, G. R. Anstis, V. J. Keast, J. D. Clarke, and M. B. Cortie, Light splitting in nanoporous gold and silver, ACS Nano 6(1), 319 (2012)
CrossRef
ADS
Google scholar
|
[87] |
D. T. Schoen, A. C. Atre, A. García-Etxarri, J. A. Dionne, and M. L. Brongersma, Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS, Nano Lett. 15(1), 120 (2015)
CrossRef
ADS
Google scholar
|
[88] |
J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas, Nano Lett. 14(10), 5517 (2014)
CrossRef
ADS
Google scholar
|
[89] |
R. A. Crowther, D. J. DeRosier, and A. Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 317, 319 (1970)
CrossRef
ADS
Google scholar
|
[90] |
P. A. Midgley and R. E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8(4), 271 (2009)
CrossRef
ADS
Google scholar
|
[91] |
D. A. De Winter, M. N. Lebbink, D. F. Wiggers De Vries, J. A. Post, and M. R. Drury, FIB-SEM cathodoluminescence tomography: Practical and theoretical considerations, J. Microsc. 243(3), 315 (2011)
CrossRef
ADS
Google scholar
|
[92] |
R. Leary, Z. Saghi, P. A. Midgley, and D. J. Holland, Compressed sensing electron tomography, Ultramicroscopy 131, 70 (2013)
CrossRef
ADS
Google scholar
|
[93] |
O. Nicoletti, F. de la Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)
CrossRef
ADS
Google scholar
|
[94] |
A. Hörl, A. Trügler, and U. Hohenester, Tomography of particle plasmon fields from electron energy loss spectroscopy, Phys. Rev. Lett. 111, 076801 (2013)
CrossRef
ADS
Google scholar
|
[95] |
D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401(6755), 788 (1999)
CrossRef
ADS
Google scholar
|
[96] |
E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process. Mag. 25(2), 21 (2008)
CrossRef
ADS
Google scholar
|
[97] |
A. C. Atre, B. J. M. Brenny, T. Coenen, A. García- Etxarri, A. Polman, and J. A. Dionne, Nanoscale optical tomography with cathodoluminescence spectroscopy, Nat. Nanotechnol. 10(5), 429 (2015)
CrossRef
ADS
Google scholar
|
[98] |
I. Arslan, J. R. Tong, and P. A. Midgley, Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials, Ultramicroscopy 106(11–12), 994 (2006)
CrossRef
ADS
Google scholar
|
[99] |
M. Lyra and A. Ploussi, Filtering in SPECT image reconstruction, Int. J. Biomed. Imaging 2011, 693795 (2011)
CrossRef
ADS
Google scholar
|
[100] |
X. Wang, R. Lockwood, M. Malac, H. Furukawa, P. Li, and A. Meldrum, Reconstruction and visualization of nanoparticle composites by transmission electron tomography, Ultramicroscopy 113, 96 (2012)
CrossRef
ADS
Google scholar
|
[101] |
A. Hörl, A. Trügler, and U. Hohenester, Full threedimensonal reconstruction of the dyadic green tensor from electron energy loss spectroscopy of plasmonic nanoparticles, ACS Photonics 2(10), 1429 (2015)
CrossRef
ADS
Google scholar
|
[102] |
G. Haberfehlner, A. Trügler, F. P. Schmidt, A. Hörl, F. Hofer, U. Hohenester, and G. Kothleitner, Correlated 3D nanoscale mapping and simulation of coupled plasmonic nanoparticles, Nano Lett. 15(11), 7726 (2015)
CrossRef
ADS
Google scholar
|
[103] |
S. M. Collins, E. Ringe, M. Duchamp, Z. Saghi, R. E. Dunin-Borkowski, and P. A. Midgley, Eigenmode tomography of surface charge oscillations of plasmonic nanoparticles by electron energy loss spectroscopy, ACS Photonics 2(11), 1628 (2015)
CrossRef
ADS
Google scholar
|
[104] |
F. J. García de Abajo and M. Kociak, Electron energygain spectroscopy, New J. Phys. 10(7), 073035 (2008)
CrossRef
ADS
Google scholar
|
[105] |
B. Barwick, D. J. Flannigan, and A. H. Zewail, Photon-induced near-field electron microscopy, Nature 462(7275), 902 (2009)
CrossRef
ADS
Google scholar
|
[106] |
B. J. M. Brenny, D. van Dam, C. I. Osorio, J. Gómez Rivas, and A. Polman, Azimuthally polarized cathodoluminescence from InP nanowires, Appl. Phys. Lett. 107(20), 201110 (2015)
CrossRef
ADS
Google scholar
|
[107] |
C. I. Osorio, T. Coenen, B. J. M. Brenny, A. Polman, and A. F. Koenderink, Angle-resolved cathodoluminescence imaging polarimetry, ACS Photonics 3(1), 147 (2016)
CrossRef
ADS
Google scholar
|
[108] |
H. G. Berry, G. Gabrielse, and A. E. Livingston, Measurement of the Stokes parameters of light, Appl. Opt. 16(12), 3200 (1977)
CrossRef
ADS
Google scholar
|
[109] |
C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, A. D. Martino, C. Vannuffel, and C. Constancias, Overlay measurements by Mueller polarimetry in back focal plane, MOEMS 10(3), 033017 (2011)
CrossRef
ADS
Google scholar
|
[110] |
G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, Metafocusing by a Metaspiral Plasmonic Lens, Nano Lett. 15(9), 5739 (2015)
CrossRef
ADS
Google scholar
|
[111] |
M. Uchida and A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature 464(7289), 737 (2010)
CrossRef
ADS
Google scholar
|
[112] |
J. Verbeeck, H. Tian, and P. Schattschneider, Production and application of electron vortex beams, Nature 467(7313), 301 (2010)
CrossRef
ADS
Google scholar
|
[113] |
B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Electron vortex beams with high quanta of orbital angular momentum, Science 331(6014), 192 (2011)
CrossRef
ADS
Google scholar
|
[114] |
K. Saitoh, Y. Hasegawa, K. Hirakawa, N. Tanaka, and M. Uchida, Measuring the orbital angular momentum of electron vortex beams using a forked grating, Phys. Rev. Lett. 111(7), 074801 (2013)
CrossRef
ADS
Google scholar
|
[115] |
L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, Exploiting lens aberrations to create electron-vortex beams, Phys. Rev. Lett. 111(6), 064801 (2013)
CrossRef
ADS
Google scholar
|
[116] |
A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, Magnetic monopole field exposed by electrons, Nat. Phys. 10(1), 26 (2014)
CrossRef
ADS
Google scholar
|
[117] |
J. Handali, P. Shakya, and B. Barwick, Creating electron vortex beams with light, Opt. Express 23(4), 5236 (2015)
CrossRef
ADS
Google scholar
|
[118] |
J. Rusz and S. Bhowmick, Boundaries for efficient use of electron vortex beams to measure magnetic properties, Phys. Rev. Lett. 111(10), 105504 (2013)
CrossRef
ADS
Google scholar
|
[119] |
P. Schattschneider, S. Löffler, M. Stöger-Pollach, and J. Verbeeck, Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81 (2014)
CrossRef
ADS
Google scholar
|
[120] |
Z. Mohammadi, C. P. Van Vlack, S. Hughes, J. Bornemann, and R. Gordon, Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons, Opt. Express 20(14), 15024 (2012)
CrossRef
ADS
Google scholar
|
[121] |
X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, Angular momentum-induced circular dichroism in nonchiral nanostructures, Nat. Commun. 5, 4922 (2014)
CrossRef
ADS
Google scholar
|
[122] |
A. Asenjo-Garcia and F. J. García de Abajo, Dichroism in the interaction between vortex electron beams, plasmons, and molecules, Phys. Rev. Lett. 113(6), 066102 (2014)
CrossRef
ADS
Google scholar
|
[123] |
S. Meuret, L. H. G. Tizei, T. Cazimajou, R. Bourrellier, H. C. Chang, F. Treussart, and M. Kociak, Photon bunching in cathodoluminescence, Phys. Rev. Lett. 114(19), 197401 (2015)
CrossRef
ADS
Google scholar
|
[124] |
M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, Probing carrier dynamics in nanostructures by picosecond cathodoluminescence, Nature 438(7067), 479 (2005)
CrossRef
ADS
Google scholar
|
[125] |
T. Onuma, Y. Kagamitani, K. Hazu, T. Ishiguro, T. Fukuda, and S. F. Chichibu, Femtosecond-laserdriven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN, Rev. Sci. Instrum. 83(4), 043905 (2012)
CrossRef
ADS
Google scholar
|
[126] |
F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)
CrossRef
ADS
Google scholar
|
[127] |
O. Schmidt, G. H. Fecher, Y. Hwu, and G. Schönhense, The spatial distribution of non-linear effects in multi-photon photoemission from metallic adsorbates on Si(111), Surf. Sci. 482–485, 687 (2001)
CrossRef
ADS
Google scholar
|
[128] |
M. Merschdorf, C. Kennerknecht, and W. Pfeiffer, Collective and single-particle dynamics in time-resolved two-photon photoemission, Phys. Rev. B 70(19), 193401 (2004)
CrossRef
ADS
Google scholar
|
[129] |
C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Mapping surface plasmon polariton propagation via counter-propagating light pulses, Opt. Express 20(12), 12877 (2012)
CrossRef
ADS
Google scholar
|
[130] |
L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, and P. Royer, Short range plasmon resonators probed by photoemission electron microscopy, Nano Lett. 8(3), 935 (2008)
CrossRef
ADS
Google scholar
|
[131] |
C. Wiemann, D. Bayer, M. Rohmer, M. Aeschlimann, and M. Bauer, Local 2PPE-yield enhancement in a defined periodic silver nanodisk array, Surf. Sci. 601(20), 4714 (2007)
CrossRef
ADS
Google scholar
|
[132] |
E. Mårsell, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, A. Mikkelsen, and A. Losquin, Direct subwavelength imaging and control of near-field localization in individual silver nanocubes, Appl. Phys. Lett. 107(20), 201111 (2015)
CrossRef
ADS
Google scholar
|
[133] |
J. T. Stuckless and M. Moskovits, Enhanced two-photon photoemission from coldly deposited silver films, Phys. Rev. B 40(14), 9997 (1989)
CrossRef
ADS
Google scholar
|
[134] |
M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, Photoemission electron microscopy as a tool for the investigation of optical near fields, Phys. Rev. Lett. 95(4), 047601 (2005)
CrossRef
ADS
Google scholar
|
[135] |
T. Leißner, C. Lemke, J. Fiutowski, J. W. Radke, A. Klick, L. Tavares, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides, Phys. Rev. Lett. 111(4), 046802 (2013)
CrossRef
ADS
Google scholar
|
[136] |
C. Lemke, T. Leißner, A. Klick, J. Fiutowski, J. W. Radke, M. Thomaschewski, J. Kjelstrup-Hansen, H. G. Rubahn, and M. Bauer, The complex dispersion relation of surface plasmon polaritons at gold/parahexaphenylene interfaces, Appl. Phys. B 116(3), 585 (2014)
CrossRef
ADS
Google scholar
|
[137] |
N. M. Buckanie, J. Göhre, P. Zhou, D. von der Linde, M. Horn-von Hoegen, and F. J. Meyer Zu Heringdorf, Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses, J. Phys.: Condens. Matter 21(31), 314003 (2009)
CrossRef
ADS
Google scholar
|
[138] |
L. Douillard and F. Charra, Photoemission electron microscopy, a tool for plasmonics, J. Electron Spectrosc. Relat. Phenom. 189(Suppl.), 24 (2013)
CrossRef
ADS
Google scholar
|
[139] |
A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film, Nano Lett. 5(6), 1123 (2005)
CrossRef
ADS
Google scholar
|
[140] |
E. Mårsell, A. Losquin, R. Svärd, M. Miranda, C. Guo, A. Harth, E. Lorek, J. Mauritsson, C. L. Arnold, H. Xu, A. L’Huillier, and A. Mikkelsen, Nanoscale imaging of local few-femtosecond near-field dynamics within a single plasmonic nanoantenna, Nano Lett. 15(10), 6601 (2015)
CrossRef
ADS
Google scholar
|
[141] |
Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, and W. P. Hess, Ultrafast imaging of surface plasmons propagating on a gold surface, Nano Lett. 15(5), 3472 (2015)
CrossRef
ADS
Google scholar
|
[142] |
M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, Spatiotemporal control of nanooptical excitations, Proc. Natl. Acad. Sci. USA 107(12), 5329 (2010)
CrossRef
ADS
Google scholar
|
[143] |
O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, Time-resolved two photon photoemission electron microscopy, Appl. Phys. B 74(3), 223 (2002)
CrossRef
ADS
Google scholar
|
[144] |
J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission, Phys. Rev. Lett. 85(14), 2921 (2000)
CrossRef
ADS
Google scholar
|
[145] |
M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. Krenn, H. Ditlbacher, F. Aussenegg, and A. Liebsch, Do Mie plasmons have a longer lifetime on resonance than off resonance? Appl. Phys. B 73(4), 305 (2001)
CrossRef
ADS
Google scholar
|
[146] |
B. Lamprecht, A. Leitner, and F. Aussenegg, SHG studies of plasmon dephasing in nanoparticles, Appl. Phys. B 68(3), 419 (1999)
CrossRef
ADS
Google scholar
|
[147] |
B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecondresolution third-harmonic generation, Phys. Rev. Lett. 83(21), 4421 (1999)
CrossRef
ADS
Google scholar
|
[148] |
M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy, Appl. Phys. A 88(3), 473 (2007)
CrossRef
ADS
Google scholar
|
[149] |
F. J. M. zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. H. von Hoegen, Femtosecond photoemission microscopy, Surf. Sci. 601, 4700 (2007)
CrossRef
ADS
Google scholar
|
[150] |
A. Kubo, N. Pontius, and H. Petek, Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface, Nano Lett. 7(2), 470 (2007)
CrossRef
ADS
Google scholar
|
[151] |
Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy, Light Sci. Appl. 2(12), e118 (2013)
CrossRef
ADS
Google scholar
|
[152] |
E. Lorek, E. Mårsell, A. Losquin, M. Miranda, A. Harth, C. Guo, R. Svärd, C. L. Arnold, A. L’Huiller, A. Mikkelsen, and J. Mauritsson, Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas, Opt. Express 23(24), 31460 (2015)
CrossRef
ADS
Google scholar
|
[153] |
C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices, Nano Lett. 13(3), 1053 (2013)
CrossRef
ADS
Google scholar
|
[154] |
C. Lemke, T. Leissner, A. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H. G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, The interplay between localized and propagating plasmonic excitations tracked in space and time, Nano Lett. 14(5), 2431 (2014)
CrossRef
ADS
Google scholar
|
[155] |
Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy, ACS Nano 10(3), 3835 (2016)
CrossRef
ADS
Google scholar
|
[156] |
P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F. J. Meyer zu Heringdorf, Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons, Plasmonics 9(6), 1401 (2014)
CrossRef
ADS
Google scholar
|
[157] |
D. Podbiel, P. Kahl, and F. J. Meyer zu Heringdorf, Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump–probe experiment with adjustable polarization, Appl. Phys. B 122(4), 1 (2016)
CrossRef
ADS
Google scholar
|
[158] |
M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, Attosecond nanoplasmonic-field microscope, Nat. Photonics 1(9), 539 (2007)
CrossRef
ADS
Google scholar
|
[159] |
M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, Adaptive subwavelength control of nanooptical fields, Nature 446(7133), 301 (2007)
CrossRef
ADS
Google scholar
|
[160] |
M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P.Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, Coherent twodimensional nanoscopy, Science 333(6050), 1723 (2011)
CrossRef
ADS
Google scholar
|
[161] |
M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, and P. Thielen, Perfect absorption in nanotextured thin films via Anderson-localized photon modes, Nat. Photonics 9(10), 663 (2015)
CrossRef
ADS
Google scholar
|
[162] |
T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72(2), 545 (2000)
CrossRef
ADS
Google scholar
|
[163] |
P. Agostini and L. F. DiMauro, The physics of attosecond light pulses, Rep. Prog. Phys. 67(6), 813 (2004)
CrossRef
ADS
Google scholar
|
[164] |
E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Direct measurement of light waves, Science 305(5688), 1267 (2004)
CrossRef
ADS
Google scholar
|
[165] |
E. Skopalová, D. Y. Lei, T. Witting, C. Arrell, F. Frank, Y. Sonnefraud, S. A. Maier, J. W. G. Tisch, and J. P. Marangos, Numerical simulation of attosecond nanoplasmonic streaking, New J. Phys. 13(8), 083003 (2011)
CrossRef
ADS
Google scholar
|
[166] |
A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu, A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A. L’Huillier, Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains, Rev. Sci. Instrum. 80(12), 123703 (2009)
CrossRef
ADS
Google scholar
|
[167] |
S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling, and U. Kleineberg, Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses, Appl. Phys. Lett. 100(5), 051904 (2012)
CrossRef
ADS
Google scholar
|
[168] |
E. Mårsell, C. L. Arnold, E. Lorek, D. Guenot, T. Fordell, M. Miranda, J. Mauritsson, H. Xu, A. L’Huillier, and A. Mikkelsen, Secondary electron imaging of nanostructures using extreme ultra-violet attosecond pulse trains and infra-red femtosecond pulses, Ann. Phys. 525(1–2), 162 (2013)
CrossRef
ADS
Google scholar
|
[169] |
S. H. Chew, K. Pearce, C. Späth, A. Guggenmos, J. Schmidt, F. Süßmann, M. F. Kling, U. Kleineberg, E. Mårsell, C. L. Arnold, E. Lorek, P. Rudawski, C. Guo, M. Miranda, F. Ardana, J. Mauritsson, A. L’Huillier, and A. Mikkelsen, Imaging localized surface plasmons by femtosecond to attosecond time-resolved photoelectron emission microscopy- “ATTO-PEEM”, in: Attosecond Nanophysics, Wiley-VCH Verlag GmbH and Co. KGaA, 2014, pp 325–364
|
[170] |
B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, and M. F. Kling, Attosecond nanoscale nearfield sampling, Nat. Commun. 7, 11717 (2016)
CrossRef
ADS
Google scholar
|
[171] |
H. Boersch, J. Geiger, and W. Stickel, Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration, Phys. Rev. Lett. 17(7), 379 (1966)
CrossRef
ADS
Google scholar
|
[172] |
A. Howie, Electrons and photons: Exploiting the connection, Inst. Phys. Conf. Ser. 161, 311 (1999)
|
[173] |
A. Howie, Photon-assisted electron energy loss spectroscopy and ultrafast imaging, Microsc. Microanal. 15(4), 314 (2009)
CrossRef
ADS
Google scholar
|
[174] |
A. Howie, Photon interactions for electron microscopy applications, Eur. Phys. J. Appl. Phys. 54, 33502 (2011)
CrossRef
ADS
Google scholar
|
[175] |
A. Howie, Stimulated excitation electron microscopy and spectroscopy, Ultramicroscopy 151, 116 (2015)
CrossRef
ADS
Google scholar
|
[176] |
L. Piazza, T. T. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field, Nat. Commun. 6, 6407 (2015)
CrossRef
ADS
Google scholar
|
[177] |
D. J. Flannigan, B. Barwick, and A. H. Zewail, Biological imaging with 4D ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 107(22), 9933 (2010)
CrossRef
ADS
Google scholar
|
[178] |
F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields, Nano Lett. 10(5), 1859 (2010)
CrossRef
ADS
Google scholar
|
[179] |
A. Yurtsever and A. H. Zewail, Direct visualization of near-fields in nanoplasmonics and nanophotonics, Nano Lett. 12(6), 3334 (2012)
CrossRef
ADS
Google scholar
|
[180] |
A. Yurtsever, J. S. Baskin, and A. H. Zewail, Entangled nanoparticles: Discovery by visualization in 4D electron microscopy, Nano Lett. 12(9), 5027 (2012)
CrossRef
ADS
Google scholar
|
[181] |
L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)
CrossRef
ADS
Google scholar
|
[182] |
M. T. Hassan, H. Liu, J. S. Baskin, and A. H. Zewail, Photon gating in four-dimensional ultrafast electron microscopy, Proc. Natl. Acad. Sci. USA 112(42), 12944 (2015)
CrossRef
ADS
Google scholar
|
[183] |
T. T. A. Lummen, R. J. Lamb, G. Berruto, T. Lagrange, L. Dal Negro, F. J. García de Abajo, D. McGrouther, B. Barwick, and F. Carbone, Shaping, imaging and controlling plasmonic interference fields at buried interfaces, arXiv: 1604.01232 (2016)
|
[184] |
A. Yurtsever, R. M. van der Veen, and A. H. Zewail, Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335(6064), 59 (2012)
CrossRef
ADS
Google scholar
|
[185] |
A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521(7551), 200 (2015)
CrossRef
ADS
Google scholar
|
[186] |
S. T. Park, M. Lin, and A. H. Zewail, Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental, New J. Phys. 12(12), 123028 (2010)
CrossRef
ADS
Google scholar
|
[187] |
D. A. Plemmons, S. Tae Park, A. H. Zewail, and D. J. Flannigan, Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy, Ultramicroscopy 146, 97 (2014)
CrossRef
ADS
Google scholar
|
[188] |
B. Shore and J. Eberly, Analytic approximations in multi-level excitation theory, Opt. Commun. 24(1), 83 (1978)
CrossRef
ADS
Google scholar
|
[189] |
F. J. García de Abajo, B. Barwick, and F. Carbone, Electron diffraction by plasmon waves, arXiv: 1603.07551 (2016)
|
[190] |
N. Talebi, W. Sigle, R. Vogelgesang, and P. van Aken, Numerical simulations of interference effects in photonassisted electron energy-loss spectroscopy, New J. Phys. 15(5), 053013 (2013)
CrossRef
ADS
Google scholar
|
[191] |
H. S. Park, J. S. Baskin, O. H. Kwon, and A. H. Zewail, Atomic-scale imaging in real and energy space developed in ultrafast electron microscopy, Nano Lett. 7(9), 2545 (2007)
CrossRef
ADS
Google scholar
|
[192] |
C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars, Nano Lett. 11(2), 402 (2011)
CrossRef
ADS
Google scholar
|
[193] |
H. Liu, J. S. Baskin, and A. H. Zewail, Infrared PINEM developed by diffraction in 4D UEM, Proc. Natl. Acad. Sci. USA 113(8), 2041 (2016)
CrossRef
ADS
Google scholar
|
[194] |
B. Barwick and A. H. Zewail, Photonics and plasmonics in 4D ultrafast electron microscopy, ACS Photonics 2(10), 1391 (2015)
CrossRef
ADS
Google scholar
|
[195] |
A. Gliserin, M. Walbran, F. Krausz, and P. Baum, Subphonon- period compression of electron pulses for atomic diffraction, Nat. Commun. 6, 8723 (2015)
CrossRef
ADS
Google scholar
|
[196] |
E. Fill, L. Veisz, A. Apolonski, and F. Krausz, Sub-fs electron pulses for ultrafast electron diffraction, New J. Phys. 8(11), 272 (2006)
CrossRef
ADS
Google scholar
|
[197] |
G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, Design and implementation of a flexible beamline for fs electron diffraction experiments, Nucl. Instrum. Methods Phys. Res. Sect. A 691, 113 (2012)
CrossRef
ADS
Google scholar
|
[198] |
P. Baum and A. H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, Proc. Natl. Acad. Sci. USA 104(47), 18409 (2007)
CrossRef
ADS
Google scholar
|
[199] |
S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, Temporal lenses for attosecond and femtosecond electron pulses, Proc. Natl. Acad. Sci. USA 106(26), 10558 (2009)
CrossRef
ADS
Google scholar
|
[200] |
P. Rudawski, A. Harth, C. Guo, E. Lorek, M. Miranda, C. M. Heyl, E. W. Larsen, J. Ahrens, O. Prochnow, T. Binhammer, U. Morgner, J. Mauritsson, A. L’ Huillier, and C. L. Arnold, Carrier-envelope phase dependent high-order harmonic generation with a high-repetition rate OPCPA-system, Eur. Phys. J. D 69, 70 (2015)
CrossRef
ADS
Google scholar
|
[201] |
V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzán, N. I. Zheludev, M. Kociak, and F. J. García de Abajo, Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study, Nano Lett. 12(8), 4172 (2012)
CrossRef
ADS
Google scholar
|
[202] |
P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, Photoelectron imaging of modal interference in plasmonic whispering gallery cavities, Opt. Express 23(25), 31619 (2015)
CrossRef
ADS
Google scholar
|
[203] |
E. Ringe, C. J. DeSantis, S. M. Collins, M. Duchamp, R. E. Dunin-Borkowski, S. E. Skrabalak, and P. A. Midgley, Resonances of nanoparticles with poor plasmonic metal tips, Sci. Rep. 5, 17431 (2015)
CrossRef
ADS
Google scholar
|
[204] |
M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C. W. Qiu, and K. P. Loh, Visible surface plasmon modes in single Bi2Te3 nanoplate, Nano Lett. 15(12), 8331 (2015)
CrossRef
ADS
Google scholar
|
[205] |
J. A. Hachtel, C. Marvinney, A. Mouti, D. Mayo, R. Mu, S. J. Pennycook, A. R. Lupini, M. F. Chisholm, R. F. Haglund, and S. T. Pantelides, Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope, Nanotechnology 27(15), 155202 (2016)
CrossRef
ADS
Google scholar
|
[206] |
T. Coenen, D. T. Schoen, B. J. M. Brenny, A. Polman, and M. L. Brongersma, Combined electron energyloss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures, Phys. Rev. B 93(19), 195429 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |