Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability
Feng Chen, Ai-Guo Xu, Guang-Cai Zhang
Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability
The two-dimensional Rayleigh–Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin–Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.
discrete Boltzmann model/method / multiple-relaxation-time / Rayleigh–Taylor instability / nonequilibrium
[1] |
L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc. s1–14(1), 170 (1882)
|
[2] |
G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (I), P. Roy. Soc. A 201(1065), 192 (1950)
CrossRef
ADS
Google scholar
|
[3] |
W. H. Ye, W. Y. Zhang, G. N. Chen, C. Q. Jin, and J. Zhang, Numerical simulations of the FCT method on Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Chin. J. Comput. Phys. 15(3), 277 (1998)
|
[4] |
X. L. Li, B. X. Jin, and J. Glimm, Numerical study for the three dimensional Rayleigh–Taylor instability through the TVD/AC scheme and parallel computation, J. Comput. Phys. 126(2), 343 (1996)
CrossRef
ADS
Google scholar
|
[5] |
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y. J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169(2), 708 (2001)
CrossRef
ADS
Google scholar
|
[6] |
Y. K. Li and A. Umemura, Mechanism of the large surface deformation caused by Rayleigh–Taylor instability at large Atwood number, J. Appl. Math. Phys. 2(10), 971 (2014)
CrossRef
ADS
Google scholar
|
[7] |
M. S. Shadloo, A. Zainali, and M. Yildiz, Simulation of single mode Rayleigh–Taylor instability by SPH method, Comput. Mech. 51(5), 699 (2013)
CrossRef
ADS
Google scholar
|
[8] |
L. Duchemin, C. Josserand, and P. Clavin, Asymptotic behavior of the Rayleigh–Taylor instability, Phys. Rev. Lett. 94(22), 224501 (2005)
CrossRef
ADS
Google scholar
|
[9] |
A. W. Cook and P. E. Dimotakis, Transition stages of Rayleigh–Taylor instability between miscible fluids, J. Fluid Mech. 443, 69 (2001)
CrossRef
ADS
Google scholar
|
[10] |
A. Celani, A. Mazzino, and L. Vozella, Rayleigh–Taylor turbulence in two dimensions, Phys. Rev. Lett. 96(13), 134504 (2006)
CrossRef
ADS
Google scholar
|
[11] |
W. Cabot, Comparison of two- and three-dimensional simulations of miscible Rayleigh–Taylor instability, Phys. Fluids 18(4), 045101 (2006)
CrossRef
ADS
Google scholar
|
[12] |
A. Celani, A. Mazzino, P. Muratore-Ginanneschi, and L. Vozella, Phase-field model for the Rayleigh–Taylor instability of immiscible fluids, J. Fluid Mech. 622, 115 (2009)
CrossRef
ADS
Google scholar
|
[13] |
R. Betti and J. Sanz, Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97(20), 205002 (2006)
CrossRef
ADS
Google scholar
|
[14] |
M. R. Gupta, L. Mandal, S. Roy, and M. Khan, Effect of magnetic field on temporal development of Rayleigh– Taylor instability induced interfacial nonlinear structure, Phys. Plasmas 17(1), 012306 (2010)
CrossRef
ADS
Google scholar
|
[15] |
P. K. Sharma, R. P. Prajapati, and R. K. Chhajlani, Effect of surface tension and rotation on Rayleigh–Taylor instability of two superposed fluids with suspended particles, Acta Phys. Pol. A 118(4), 576 (2010)
CrossRef
ADS
Google scholar
|
[16] |
R. Banerjee, L. K. Mandal, S. Roy, M. Khan, and M. R. Gupta, Combined effect of viscosity and vorticity on single mode Rayleigh–Taylor instability bubble growth, Phys. Plasmas 18(2), 022109 (2011)
CrossRef
ADS
Google scholar
|
[17] |
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
CrossRef
ADS
Google scholar
|
[18] |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[19] |
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)
CrossRef
ADS
Google scholar
|
[20] |
A. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E 67(5), 056105 (2003)
CrossRef
ADS
Google scholar
|
[21] |
A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E 74(1), 011505 (2006)
CrossRef
ADS
Google scholar
|
[22] |
A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A 362(1), 42 (2006)
CrossRef
ADS
Google scholar
|
[23] |
X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)
CrossRef
ADS
Google scholar
|
[24] |
X. Shan and H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49(4), 2941 (1994)
CrossRef
ADS
Google scholar
|
[25] |
G. Gonnella, E. Orlandini, and J. M. Yeomans, Spinodal decomposition to a lamellar phase: Effects of hydrodynamic flow, Phys. Rev. Lett. 78(9), 1695 (1997)
CrossRef
ADS
Google scholar
|
[26] |
H. Fang, Z. Wang, Z. Lin, and M. Liu, Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. Rev. E 65(5), 051925 (2002)
CrossRef
ADS
Google scholar
|
[27] |
Z. Guo and C. Shu, Lattice Boltzmann Method and Its Applications in Engineering (advances in computational fluid dynamics), World Scientific Publishing Company, 2013
CrossRef
ADS
Google scholar
|
[28] |
A. Xu, G. Zhang, Y. Li, and H. Li, Modeling and simulation of nonequilibrium and multiphase complex systemslattice Boltzmann kinetic theory and application, Prog. Phys. 34(3), 136 (2014)
|
[29] |
R. Zhang, Y. Xu, B. Wen, N. Sheng, and H. Fang, Enhanced permeation of a hydrophobic fluid through particles with hydrophobic and hydrophilic patterned surfaces, Sci. Rep. 4, 5738 (2014)
CrossRef
ADS
Google scholar
|
[30] |
X. B. Nie, Y. H. Qian, G. D. Doolen, and S. Y. Chen, Lattice Boltzmann simulation of the two-dimensional Rayleigh–Taylor instability, Phys. Rev. E 58(5), 6861 (1998)
CrossRef
ADS
Google scholar
|
[31] |
X. Y. He, S. Y. Chen, and R. Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys. 152(2), 642 (1999)
CrossRef
ADS
Google scholar
|
[32] |
X. Y. He, R. Y. Zhang, S. Y. Chen, and G. D. Doolen, On the three-dimensional Rayleigh–Taylor instability, Phys. Fluids 11(5), 1143 (1999)
CrossRef
ADS
Google scholar
|
[33] |
R. Y. Zhang, X. Y. He, and S. Y. Chen, Interface and surface tension in incompressible lattice Boltzmann multiphase model, Comput. Phys. Commun. 129(1-3), 121 (2000)
CrossRef
ADS
Google scholar
|
[34] |
Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E 85(2), 026704 (2012)
CrossRef
ADS
Google scholar
|
[35] |
G. J. Liu and Z. L. Guo, Effects of Prandtl number on mixing process in miscible Rayleigh–Taylor instability: A lattice Boltzmann study, Int. J. Numer. Method. H. 23(1), 176 (2013)
CrossRef
ADS
Google scholar
|
[36] |
H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phasefield- based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
CrossRef
ADS
Google scholar
|
[37] |
M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, and S. Succi, Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria, J. Fluid Mech. 628, 299 (2009)
CrossRef
ADS
Google scholar
|
[38] |
A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, and F. Toschi, Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems, Phys. Fluids 22(5), 055101 (2010)
CrossRef
ADS
Google scholar
|
[39] |
L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and R. Tripiccione, Reactive Rayleigh–Taylor systems: Front propagation and non-stationarity, Europhys. Lett. 94(5), 54004 (2011)
CrossRef
ADS
Google scholar
|
[40] |
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef
ADS
Google scholar
|
[41] |
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)
CrossRef
ADS
Google scholar
|
[42] |
C. Lin, A. Xu, G. Zhang, and Y. Li, Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena, Commum. Theor. Phys. 62(5), 737 (2014)
CrossRef
ADS
Google scholar
|
[43] |
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)
CrossRef
ADS
Google scholar
|
[44] |
A. Xu, G. Zhang, and Y. Ying, Progess of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
|
[45] |
C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef
ADS
Google scholar
|
[46] |
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame (2016) (in press)
CrossRef
ADS
Google scholar
|
[47] |
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11 11(26), 5336 (2015)
|
[48] |
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
CrossRef
ADS
Google scholar
|
[49] |
F. Chen, A. Xu, G. Zhang, Y. Wang, Two-dimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9(2), 246 (2014)
CrossRef
ADS
Google scholar
|
[50] |
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Thermo-hydrodynamic non-equilibrium effects on compressible Rayleigh–Taylor instability, arXiv: 1507.01107
|
[51] |
D. Layzer, On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
CrossRef
ADS
Google scholar
|
[52] |
S. F. Li, W. H. Ye, Y. Zhang, S. Shu, and A. G. Xiao, High order FD-WENO schemes for Rayleigh–Taylor instability problems, Chin. J. Comput. Phys. 25(4), 379 (2008)
|
[53] |
D. Youngs, Numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Physica D 12(1–3), 32 (1984)
|
[54] |
Y. D. Zhang, Modeling and research of detonation based on discrete Boltzmann method, A Dissertation Submitted for the Degree of Master, Beihang University, 2015
|
/
〈 | 〉 |