Fundamental modes in waveguide pipe twisted by saturated double-well potential

Gui-Hua Chen, Hong-Cheng Wang, Zhao-Pin Chen, Yan Liu

PDF(5437 KB)
PDF(5437 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 124201. DOI: 10.1007/s11467-016-0601-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Fundamental modes in waveguide pipe twisted by saturated double-well potential

Author information +
History +

Abstract

We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.

Keywords

Twisted double-well waveguide / saturated nonlinear potential / symmetry breaking / symmetry recovery

Cite this article

Download citation ▾
Gui-Hua Chen, Hong-Cheng Wang, Zhao-Pin Chen, Yan Liu. Fundamental modes in waveguide pipe twisted by saturated double-well potential. Front. Phys., 2017, 12(1): 124201 https://doi.org/10.1007/s11467-016-0601-6

References

[1]
Q. Gong and X. Hu, Ultrafast photonic crystal optical switching, Front. Phys. 1, 171 (2006)
CrossRef ADS Google scholar
[2]
Y. Liu, F. Qin, F. Zhou, Q. Meng, D. Zhang, and Z. Li, Ultrafast optical switching in Kerr nonlinear photonic crystals, Front. Phys. 5, 244 (2010)
CrossRef ADS Google scholar
[3]
M. Shen, B. Li, L. Ge, W. Chen, and D. Wu, Stability of vortex solitons under competing local and nonlocal cubic nonlinearities, Opt. Commun. 338, 27 (2015)
CrossRef ADS Google scholar
[4]
Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, Modulation instability in metamaterials with saturable nonlinearity, J. Opt. Soc. Am. B 28(4), 908 (2011)
CrossRef ADS Google scholar
[5]
T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: Existence, stability and dynamics, Physica D 237(4), 551 (2008)
CrossRef ADS Google scholar
[6]
F. Setzpfandt, A. A. Sukhorukov, and T. Pertsch, Discrete quadratic solitons with competing secondharmonic components, Phys. Rev. A 84(5), 053843 (2011)
CrossRef ADS Google scholar
[7]
V. Lutsky and B. A. Malomed, One- and twodimensional solitons supported by singular modulation of quadratic nonlinearity, Phys. Rev. A 91(2), 023815 (2015)
CrossRef ADS Google scholar
[8]
M. Shen, Y. Y. Lin, C. C. Jeng, and R. K. Lee, Vortex pairs in nonlocal nonlinear media, J. Opt. 14(6), 065204 (2012)
CrossRef ADS Google scholar
[9]
M. Shen, J. S. Gao, and L. J. Ge, Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media, Sci. Rep. 5, 9814 (2015)
CrossRef ADS Google scholar
[10]
Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)
CrossRef ADS Google scholar
[11]
Y. S. Kivshar, Nonlinear Tamm states and surface effects in periodic photonic structures, Laser Phys. Lett. 5(10), 703 (2008)
CrossRef ADS Google scholar
[12]
Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, Soliton topology versus discrete symmetry in optical lattices, Phys. Rev. Lett. 95(12), 123902 (2005)
CrossRef ADS Google scholar
[13]
Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A 80(4), 043824 (2009)
CrossRef ADS Google scholar
[14]
W. M. Liu, B. Wu, and Q. Niu, Nonlinear effects in interference of Bose–Einstein condensates, Phys. Rev. Lett. 84(11), 2294 (2000)
CrossRef ADS Google scholar
[15]
Z. X. Liang, Z. D. Zhang, and W. M. Liu, Dynamics of a bright soliton in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 94(5), 050402 (2005)
CrossRef ADS Google scholar
[16]
A. C. Ji, W. M. Liu, J. L. Song, and F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices, Phys. Rev. Lett. 101(1), 010402 (2008)
CrossRef ADS Google scholar
[17]
E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap solitons in atomic band-gap structures, Phys. Rev. Lett. 90(16), 160407 (2003)
CrossRef ADS Google scholar
[18]
N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003)
CrossRef ADS Google scholar
[19]
H. Sakaguchi and B. A. Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E 72(4), 046610 (2005)
CrossRef ADS Google scholar
[20]
B. B. Baizakov, B. A. Malomed, and M. Salerno, Matterwave solitons in radially periodic potentials, Phys. Rev. E 74(6), 066615 (2006)
CrossRef ADS Google scholar
[21]
O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
CrossRef ADS Google scholar
[22]
H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
CrossRef ADS Google scholar
[23]
Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Double symmetry breaking of solitons in one-dimensional virtual photonic crystals, Phys. Rev. A 83(5), 053832 (2011)
CrossRef ADS Google scholar
[24]
Y. Li, B. A. Malomed, J. Wu, W. Pang, S. Wang, and J. Zhou, Quasicompactons in inverted nonlinear photonic crystals, Phys. Rev. A 84(4), 043839 (2011)
CrossRef ADS Google scholar
[25]
Y. Li, W. Pang, S. Fu, and B. A. Malomed, Twocomponent solitons with a spatially modulated linear coupling: Inverted photonic crystals and fused couplers, Phys. Rev. A 85(5), 053821 (2012)
CrossRef ADS Google scholar
[26]
G. Chen, S. Zhang, and M. Wu, Optical solitons in a trinal-chennel inverted nonlinear photonic crystal, J. Nonlinear Opt. Phys. Mater. 22(01), 1350012 (2013)
CrossRef ADS Google scholar
[27]
W. Pang, H. Guo, G. Chen, and Z. Mai, Symmetry breaking bifurcation of two-component soliton modes in an inverted nonlinear random lattice, J. Phys. Soc. Jpn. 83(3), 034402 (2014)
CrossRef ADS Google scholar
[28]
J. Deng, J. Liu, S. Tan, Z. Huang, and Y. Li, Propagation dynamic of a Gaussian in the inverted nonlinear photonic crystals, Optik (Stuttg.) 125(15), 4088 (2014)
CrossRef ADS Google scholar
[29]
H. Guo, Z. Chen, J. Liu, and Y. Li, Fundamental modes in a waveguide pipe twisted by inverted nonlinear doublewell potential, Laser Phys. 24(4), 045403 (2014)
CrossRef ADS Google scholar
[30]
A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica, Opt. Express 14(13), 6055 (2006)
CrossRef ADS Google scholar
[31]
D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, Nonlinear refractive index of fs-laser-written waveguides in fused silica, Opt. Express 14(6), 2151 (2006)
CrossRef ADS Google scholar
[32]
Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency, Phys. Rev. A 82(6), 063813 (2010)
CrossRef ADS Google scholar
[33]
J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency, J. Nonlinear Opt. Phys. Mater. 20(02), 193 (2011)
CrossRef ADS Google scholar
[34]
W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
CrossRef ADS Google scholar
[35]
H. Saito and M. Ueda, Emergence of Bloch bands in a rotating Bose–Einstein condensate, Phys. Rev. Lett. 93(22), 220402 (2004)
CrossRef ADS Google scholar
[36]
S. Schwartz, M. Cozzini, C. Menotti, I. Carusotto, P. Bouyer, and S. Stringari, One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide, New J. Phys. 8(8), 162 (2006)
CrossRef ADS Google scholar
[37]
L. Wen, H. Xiong, and B. Wu, Hidden vortices in a Bose–Einstein condensate in a rotating double-well potential, Phys. Rev. A 82(5), 053627 (2010)
CrossRef ADS Google scholar
[38]
Y. Li, W. Pang, and B. A. Malomed, Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A 86(2), 023832 (2012)
CrossRef ADS Google scholar
[39]
G. Chen, Z. Luo, J. Wu, and M. Wu, Switch between the types of the symmetry breaking bifurcation in optically induced photorefractive rotational double-well potential, J. Phys. Soc. Jpn. 82(3), 034401 (2013)
CrossRef ADS Google scholar
[40]
Z. Luo, Y. Li, W. Pang, Y. Liu, and X. Wang, Double symmetry breaking of modes in dual-core rotating system, J. Phys. Soc. Jpn. 82(12), 124401 (2013)
CrossRef ADS Google scholar
[41]
W. Pang, S. Fu, J. Wu, Y. Li, and Z. Mai, Nonlinear mode in rotating double-well potential with parity-time symmetry, Chin. Phys. B 23(10), 104214 (2014)
CrossRef ADS Google scholar
[42]
J. Li, B. Liang, Y. Liu, P. Zhang, J. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, Photonic crystal formed by the imaginary part of the refractive index, Adv. Mater. 22(24), 2676 (2010)
CrossRef ADS Google scholar
[43]
M. Feng, Y. Liu, Y. Li, X. Xie, and J. Zhou, Light propagation in a resonantly absorbing waveguide array, Opt. Express 19(8), 7222 (2011)
CrossRef ADS Google scholar
[44]
B. Liang, Y. Liu, J. Li, L. Song, Y. Li, J. Zhou, and K. S. Wong, Frabication of large-size photonic crystals by holographic lithography using a lens array, J. Micromech. Microeng. 22(3), 035013 (2012)
CrossRef ADS Google scholar
[45]
Y. K. Liu, S. C. Wang, Y. Y. Li, L. Y. Song, X. S. Xie, M. N. Feng, Z. M. Xiao, S. Z. Deng, J. Y. Zhou, J. T. Li, K. Sing Wong, and T. F. Krauss, Effcient color routing with a dispersion-controlled waveguide array, Light Sci. Appl. 2(2), e52 (2013)
CrossRef ADS Google scholar
[46]
L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginarytime algorithm, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5), 7438 (2000)
CrossRef ADS Google scholar
[47]
J. Yang and T. I. Lakoba, Accelerated imaginarytime evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265 (2008)
CrossRef ADS Google scholar
[48]
L. Albuch and B. A. Malomed, Transitions between symmetric and asymmetric solitons in dual-core systems with cubicquintic nonlinearity, Math. Comput. Simul. 74(4-5), 312 (2007)
CrossRef ADS Google scholar
[49]
G. Mazzarella and L. Salasnich, Spontaneous symmetry breaking and collapse in bosonic Josephson junctions, Phys. Rev. A 82(3), 033611 (2010)
CrossRef ADS Google scholar
[50]
L. K. Lim, T. Troppenz, and C. M. Smith, Internal Josephson oscillations for distinct momenta Bose– Einstein condensates, Phys. Rev. A 84(5), 053609 (2011)
CrossRef ADS Google scholar
[51]
J. Gillet, M. A. Garcia-March, T. Busch, and F. Sols, Tunneling, self-trapping, and manipulation of higher modes of a Bose–Einstein condensate in a double well, Phys. Rev. A 89, 023614 (2014)
CrossRef ADS Google scholar
[52]
G. Szirmai, G. Mazzarella, and L. Salasnich, Tunneling dynamics of bosonic Josephson junctions assisted by a cavity field, Phys. Rev. A 91(2), 023601 (2015)
CrossRef ADS Google scholar
[53]
J. Javanainen and R. Rajapakse, Bayesian inference to characterize Josephson oscillations in a double-well trap, Phys. Rev. A 92, 023613 (2015)
CrossRef ADS Google scholar
[54]
P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
CrossRef ADS Google scholar
[55]
R. Nath, P. Pedri, and L. Santos, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 101(21), 210402 (2008)
CrossRef ADS Google scholar
[56]
I. Tikhonenkov, B. A. Malomed, and A. Vardi, Vortex solitons in dipolar Bose–Einstein condensates, Phys. Rev. A 78(4), 043614 (2008)
CrossRef ADS Google scholar
[57]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matterwave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)
CrossRef ADS Google scholar
[58]
I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
CrossRef ADS Google scholar
[59]
S. K. Adhikari, Self-trapping of a dipolar Bose–Einstein condensate in a double well, Phys. Rev. A 89(4), 043609 (2014)
CrossRef ADS Google scholar
[60]
X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose– Einstein condensates with spin-orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
CrossRef ADS Google scholar
[61]
J. M. Junquera-Hernández, J. Sánchez-Marín, and D. Maynau, Molecular electric quadrupole moments calculated with matrix dressed SDCI, Chem. Phys. Lett. 359(3-4), 343 (2002)
CrossRef ADS Google scholar
[62]
Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A 88(6), 063635 (2013)
CrossRef ADS Google scholar
[63]
J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)
CrossRef ADS Google scholar
[64]
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)
CrossRef ADS Google scholar
[65]
F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1-3), 1 (2008)
CrossRef ADS Google scholar
[66]
S. Flach and A. V. Gorbach, Discrete breathers Advances in theory and applications, Phys. Rep. 467(1-3), 1 (2008)
CrossRef ADS Google scholar
[67]
X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice wave in guiding arrays with a nonlinear PT-symmetric defect, Opt. Express 22(11), 13927 (2014)
CrossRef ADS Google scholar
[68]
Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers, Opt. Express 22(24), 29679 (2014)
CrossRef ADS Google scholar
[69]
G. Chen, H. Huang, and M. Wu, Solitary vortices in two dimensional waveguide matrix, J. Nonlinear Opt. Phys. Mater. 24(01), 1550012 (2015)
CrossRef ADS Google scholar
[70]
Z. Mai, S. Fu, J. Wu, and Y. Li, Discrete soliton in waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 83(3), 034404 (2014)
CrossRef ADS Google scholar
[71]
Z. Mai, W. Pang, J. Wu, and Y. Li, Symmetry breaking of discrete solitons in two-component waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 84(1), 014401 (2015)
CrossRef ADS Google scholar
[72]
J. Huang, H. Li, X. Zhang, and Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects, Front. Phys. 10(2), 104201 (2015)
CrossRef ADS Google scholar
[73]
Z. Chen, J. Huang, J. Chai, X. Zhang, Y. Li, and B. A. Malomed, Discrete solitons in self-defocusing systems with PT-symmetric defects, Phys. Rev. A 91(5), 053821 (2015)
CrossRef ADS Google scholar
[74]
U. Al Khawaja, and A. A. Sukhorukov, Unidirectional ow of discrete solitons in waveguide arrays, Opt. Lett. 40(12), 2719 (2015)
CrossRef ADS Google scholar
[75]
Z. Peng, H. Li, Z. Fan, X. Zhang, and Y. Li, All optical diode realized by one dimensional waveguide array, J. Nonlinear Opt. Phys. Mater. 24(02), 1550022 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(5437 KB)

Accesses

Citations

Detail

Sections
Recommended

/