Determining H0 using a model-independent method

Pu-Xun Wu, Zheng-Xiang Li, Hong-Wei Yu

PDF(302 KB)
PDF(302 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 129801. DOI: 10.1007/s11467-016-0599-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Determining H0 using a model-independent method

Author information +
History +

Abstract

By using type Ia supernovae (SNIa) to provide the luminosity distance (LD) directly, which depends on the value of the Hubble constant H0 = 100h km·s−1·Mpc−1, and the angular diameter distance from galaxy clusters or baryon acoustic oscillations (BAOs) to give the derived LD according to the distance duality relation, we propose a model-independent method to determine h from the fact that different observations should give the same LD at a given redshift. Combining the Sloan Digital Sky Survey II (SDSS-II) SNIa from the MLCS2k2 light curve fit and galaxy cluster data, we find that at the 1σ confidence level (CL), h=0.5867±0.0303 for the sample of the elliptical β model for galaxy clusters, and h=0.6199±0.0293 for that of the sphericall β model. The former is smaller than the values from other observations, whereas the latter is consistent with the Planck result at the 2σ CL and agrees very well with the value reconstructed directly from the H(z) data. With the SDSS-II SNIa and BAO measurements, a tighter constraint, h = 0.6683±0.0221, is obtained. For comparison, we also consider the Union 2.1 SNIa from the SALT2 light curve fitting. The results from the Union 2.1 SNIa are slightly larger than those from the SDSS-II SNIa, and the Union 2.1 SNIa+ BAOs give the tightest value. We find that the values from SNIa+ BAOs are quite consistent with those from the Planck and the BAOs, as well as the local measurement from Cepheids and very-low-redshift SNIa.

Keywords

Hubble constant / luminosity distance / angular diameter distance

Cite this article

Download citation ▾
Pu-Xun Wu, Zheng-Xiang Li, Hong-Wei Yu. Determining H0 using a model-independent method. Front. Phys., 2017, 12(1): 129801 https://doi.org/10.1007/s11467-016-0599-9

References

[1]
W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. JrKennicutt, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553(1), 47 (2001)
CrossRef ADS Google scholar
[2]
A. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730(2), 119 (2011)
CrossRef ADS Google scholar
[3]
C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, , Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results, Astrophys. J. Suppl. 208(2), 20 (2013)
CrossRef ADS Google scholar
[4]
G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, , Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208(2), 19 (2013)
CrossRef ADS Google scholar
[5]
C. L. Bennett, D. Larson, J. L. Weiland, and G. Hinshaw, The 1% concordance Hubble constant, Astrophys. J. 794(2), 135 (2014)
CrossRef ADS Google scholar
[6]
E. Calabrese, M. Archidiacono, A. Melchiorri, and B. Ratra, Impact of H0 prior on the evidence for dark radiation, Phys. Rev. D 86(4), 043520 (2012)
CrossRef ADS Google scholar
[7]
G. Chen and B. Ratra, Median statistics and the Hubble constant, Publ. Astron. Soc. Pac. 123(907), 1127 (2011)
CrossRef ADS Google scholar
[8]
P. A. R. Ade, . (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014)
CrossRef ADS Google scholar
[9]
P. A. R. Ade, . (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589
[10]
É. Aubourg, . (BOSS Collaboration), Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92(12), 123516 (2015)
CrossRef ADS Google scholar
[11]
L. Anderson, E. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj,, The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, Mon. Not. R. Astron. Soc. 441(1), 24 (2014)
CrossRef ADS Google scholar
[12]
M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, , Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568, A22 (2014)
CrossRef ADS Google scholar
[13]
V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, Cosmic variance and the measurement of the local Hubble parameter, Phys. Rev. Lett. 110(24), 241305 (2013)
CrossRef ADS Google scholar
[14]
S. N. Zhang and Y. Z. Ma, Direct measurement of evolving dark energy density and super-accelerating expansion of the universe, arXiv: 1303.6124
[15]
G. Efstathiou, H0 revisited, Mon. Not. R. Astron. Soc. 440(2), 1138 (2014)
CrossRef ADS Google scholar
[16]
M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, , Confirmation of a star formation bias in Type Ia supernova distances and its effect on the measurement of the Hubble constant, Astrophys. J. 802, 20 (2015)
CrossRef ADS Google scholar
[17]
A. E. Romano and S. A. Vallejo, Directional dependence of the local estimation of H0 and the nonperturbative effects of primordial curvature perturbations, Europhys. Lett. 109(3), 39002 (2015)
CrossRef ADS Google scholar
[18]
A. E. Romano and S. A. Vallejo, Low red-shift effects of local structure on the Hubble parameter in presence of a cosmological constant, Eur. Phys. J. C 76(4), 216 (2016)
CrossRef ADS Google scholar
[19]
D. Spergel, R. Flauger, and R. Hlozek, Planck data reconsidered, Phys. Rev. D 91(2), 023518 (2015)
CrossRef ADS Google scholar
[20]
E. M. L. Humphreys, M. J. Reid, J. M. Moran, L. J. Greenhill, and A. L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant, Astrophys. J. 775(1), 13 (2013)
CrossRef ADS Google scholar
[21]
F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley- Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant, Mon. Not. R. Astron. Soc. 416(4), 3017 (2011)
CrossRef ADS Google scholar
[22]
E. A. Kazin, J. Koda, C. Blake, N. Padmanabhan, S. Brough, , The WiggleZ Dark Energy Survey: Improved distance measurements to z= 1 with reconstruction of the baryonic acoustic feature, Mon. Not. R. Astron. Soc. 441(4), 3524 (2014)
CrossRef ADS Google scholar
[23]
T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, , Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015)
CrossRef ADS Google scholar
[24]
C. H. Chuang, F. Prada, A. J. Cuesta, , The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements and the strong power of $f(z)nsigma_8(z)$ on constraining dark energy, Mon. Not. R. Astron. Soc. 433, 3559 (2013)
CrossRef ADS Google scholar
[25]
M. D. P. Hemantha, Y. Wang, and C. H. Chuang, Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies, Mon. Not. R. Astron. Soc. 445(4), 3737 (2014)
CrossRef ADS Google scholar
[26]
C. Cheng and Q. G. Huang, An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets, Sci. China: Phys. Mech. Astron. 58(9), 599801 (2015)
CrossRef ADS Google scholar
[27]
V. C. Busti, C. Clarkson, and M. Seikel, Evidence for a lower value for H0 from cosmic chronometers data? Mon. Not. R. Astron. Soc. 441(1), L11 (2014)
CrossRef ADS Google scholar
[28]
M. Bonamente, M. K. Joy, S. J. LaRoque, J. E. Carlstrom, E. D. Reese, and K. S. Dawson, Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high redshift galaxy clusters, Astrophys. J. 647(1), 25 (2006)
CrossRef ADS Google scholar
[29]
I. Ferreras, A. Pasquali, S. Malhotra, J. Rhoads, S. Cohen, R. Windhorst, N. Pirzkal, N. Grogin, A. M. Koekemoer, T. Lisker, N. Panagia, E. Daddi, and N. P. Hathi, Early-type galaxies in the PEARS survey: Probing the stellar populations at moderate redshift, Astrophys. J. 706(1), 158 (2009)
CrossRef ADS Google scholar
[30]
M. Longhetti, P. Saracco, P. Severgnini, R. D. Ceca, F. Mannucci, R. Bender, N. Drory, G. Feulner, and U. Hopp, The Kormendy relation of massive elliptical galaxies at z’ 1:5. Evidence for size evolution? Mon. Not. R. Astron. Soc. 374(2), 614 (2007)
CrossRef ADS Google scholar
[31]
E. Gaztañaga, A. Cabré, and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z), Mon. Not. R. Astron. Soc. 399(3), 1663 (2009)
CrossRef ADS Google scholar
[32]
J. Simon, L. Verde, and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71(12), 123001 (2005)
CrossRef ADS Google scholar
[33]
D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, Cosmic Chronometers: Constraining the equation of state of dark energy (I): H(z) measurements, J. Cosmol. Astropart. Phys. 2(02), 8 (2010)
CrossRef ADS Google scholar
[34]
D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. S coccimarro, M. R. Blanton, , Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633(2), 560 (2005)
CrossRef ADS Google scholar
[35]
J. A. S. Lima and J. V. Cunha, A 3% determination of H0 at intermediate redshifts, Astrophys. J. 781(2), L38 (2014)
CrossRef ADS Google scholar
[36]
R. F. L. Holanda, V. C. Busti, and G. P. da Silva, Robustness of H0 determination at intermediate redshifts, Mon. Not. R. Astron. Soc. 443(1), L74 (2014)
CrossRef ADS Google scholar
[37]
E. De Filippis, M. Sereno, M. W. Bautz, and G. Longo, Measuring the three-dimensional structure of galaxy clusters. 1. Application to a sample of 25 clusters, Astrophys. J. 625(1), 108 (2005)
CrossRef ADS Google scholar
[38]
R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman, , First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: Hubble diagram and cosmological parameters, Astrophys. J. Suppl. 185(1), 32 (2009)
CrossRef ADS Google scholar
[39]
R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, , Spectra and light curves of six type Ia supernovae at 0:511<z<1 : 12 and the Union2 compilation, Astrophys. J. 716, 712 (2010)
CrossRef ADS Google scholar
[40]
S. Jha, A. G. Riess, and R. P. Kirshner, Improved distances to type Ia supernovae with multicolor light curve shapes: MLCS2k2, Astrophys. J. 659(1), 122 (2007)
CrossRef ADS Google scholar
[41]
J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain, , SALT2: Using distant supernovae to improve the use of Type Ia supernovae as distance indicators, Astron. Astrophys. 466(1), 11 (2007)
CrossRef ADS Google scholar
[42]
N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, , The Hubble space telescope cluster supernova survey: V. improving the dark energy constraints above z>1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)
CrossRef ADS Google scholar
[43]
B. A. Bassett and M. Kunz, Cosmic distance-duality as probe of exotic physics and acceleration, Phys. Rev. D 69(10), 101305 (2004)
CrossRef ADS Google scholar
[44]
B. A. Bassett and M. Kunz, Cosmic acceleration vs. axion-photon mixing, Astrophys. J. 607(2), 661 (2004)
CrossRef ADS Google scholar
[45]
M. Kunz and B. A. Bassett, A Tale of Two Distances, arXiv: astro-ph/0406013
[46]
R. Nair, S. Jhingan, and D. Jain, Cosmic distance duality and cosmic transparency, J. Cosmol. Astropart. Phys. 1212, 028 (2012)
[47]
H. Lampeitl, R. C. Nichol, H. J. Seo, T. Giannantonio, C. Shapiro, , First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets, Mon. Not. R. Astron. Soc. 401(4), 2331 (2009)
CrossRef ADS Google scholar
[48]
Z. Li, P. Wu, and H. Yu, Cosmological-modelindependent tests for the distance-duality relation from Galaxy Clusters and Type Ia Supernova, Astrophys. J. 729(1), L14 (2011)
CrossRef ADS Google scholar
[49]
R. F. L. Holanda, J. A. S. Lima, and M. B. Ribeiro, Testing the distance-duality relation with galaxy clusters and type Ia supernovae, Astrophys. J. 722(2), L233 (2010)
CrossRef ADS Google scholar
[50]
P. Wu, Z. Li, X. Liu, and H. Yu, Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation, Phys. Rev. D 92(2), 023520 (2015)
CrossRef ADS Google scholar
[51]
P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd Ed., edited by P. R. Bevington and K. D. Robinson, MA: McGraw-Hill, 2003
[52]
E. D. Reese, J. E. Carlstrom, M. Joy, J. J. Mohr, L. Grego, and W. L. Holzapfel, Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zel’dovich effect, Astrophys. J. 581(1), 53 (2002)
CrossRef ADS Google scholar
[53]
B. S. Mason, S. T. Myers, and A. C. S. Readhead, A Measurement of H0 from the Sunyaev-Zel’dovich Effect, Astrophys. J. 555, L11 (2001)
CrossRef ADS Google scholar
[54]
B. A. Bassett and R. Hlozek, Baryon acoustic oscillations, arXiv: 0910.5224
[55]
C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, , The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1, Mon. Not. R. Astron. Soc. 425(1), 405 (2012)
CrossRef ADS Google scholar
[56]
X. Xu, A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, and C. K. McBride, Measuring DA and H at z= 0 : 35 from the SDSS DR7 LRGs using baryon acoustic oscillations, Mon. Not. R. Astron. Soc. 431(3), 2834 (2013)
CrossRef ADS Google scholar
[57]
L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, , The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering, Mon. Not. R. Astron. Soc. 439(4), 3504 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(302 KB)

Accesses

Citations

Detail

Sections
Recommended

/