Determining H0 using a model-independent method
Pu-Xun Wu, Zheng-Xiang Li, Hong-Wei Yu
Determining H0 using a model-independent method
By using type Ia supernovae (SNIa) to provide the luminosity distance (LD) directly, which depends on the value of the Hubble constant H0 = 100h km·s−1·Mpc−1, and the angular diameter distance from galaxy clusters or baryon acoustic oscillations (BAOs) to give the derived LD according to the distance duality relation, we propose a model-independent method to determine h from the fact that different observations should give the same LD at a given redshift. Combining the Sloan Digital Sky Survey II (SDSS-II) SNIa from the MLCS2k2 light curve fit and galaxy cluster data, we find that at the 1σ confidence level (CL), h=0.5867±0.0303 for the sample of the elliptical β model for galaxy clusters, and h=0.6199±0.0293 for that of the sphericall β model. The former is smaller than the values from other observations, whereas the latter is consistent with the Planck result at the 2σ CL and agrees very well with the value reconstructed directly from the H(z) data. With the SDSS-II SNIa and BAO measurements, a tighter constraint, h = 0.6683±0.0221, is obtained. For comparison, we also consider the Union 2.1 SNIa from the SALT2 light curve fitting. The results from the Union 2.1 SNIa are slightly larger than those from the SDSS-II SNIa, and the Union 2.1 SNIa+ BAOs give the tightest value. We find that the values from SNIa+ BAOs are quite consistent with those from the Planck and the BAOs, as well as the local measurement from Cepheids and very-low-redshift SNIa.
Hubble constant / luminosity distance / angular diameter distance
[1] |
W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. JrKennicutt, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553(1), 47 (2001)
CrossRef
ADS
Google scholar
|
[2] |
A. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730(2), 119 (2011)
CrossRef
ADS
Google scholar
|
[3] |
C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw,
CrossRef
ADS
Google scholar
|
[4] |
G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett,
CrossRef
ADS
Google scholar
|
[5] |
C. L. Bennett, D. Larson, J. L. Weiland, and G. Hinshaw, The 1% concordance Hubble constant, Astrophys. J. 794(2), 135 (2014)
CrossRef
ADS
Google scholar
|
[6] |
E. Calabrese, M. Archidiacono, A. Melchiorri, and B. Ratra, Impact of H0 prior on the evidence for dark radiation, Phys. Rev. D 86(4), 043520 (2012)
CrossRef
ADS
Google scholar
|
[7] |
G. Chen and B. Ratra, Median statistics and the Hubble constant, Publ. Astron. Soc. Pac. 123(907), 1127 (2011)
CrossRef
ADS
Google scholar
|
[8] |
P. A. R. Ade,
CrossRef
ADS
Google scholar
|
[9] |
P. A. R. Ade,
|
[10] |
É. Aubourg,
CrossRef
ADS
Google scholar
|
[11] |
L. Anderson, E. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj,
CrossRef
ADS
Google scholar
|
[12] |
M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin,
CrossRef
ADS
Google scholar
|
[13] |
V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, Cosmic variance and the measurement of the local Hubble parameter, Phys. Rev. Lett. 110(24), 241305 (2013)
CrossRef
ADS
Google scholar
|
[14] |
S. N. Zhang and Y. Z. Ma, Direct measurement of evolving dark energy density and super-accelerating expansion of the universe, arXiv: 1303.6124
|
[15] |
G. Efstathiou, H0 revisited, Mon. Not. R. Astron. Soc. 440(2), 1138 (2014)
CrossRef
ADS
Google scholar
|
[16] |
M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus,
CrossRef
ADS
Google scholar
|
[17] |
A. E. Romano and S. A. Vallejo, Directional dependence of the local estimation of H0 and the nonperturbative effects of primordial curvature perturbations, Europhys. Lett. 109(3), 39002 (2015)
CrossRef
ADS
Google scholar
|
[18] |
A. E. Romano and S. A. Vallejo, Low red-shift effects of local structure on the Hubble parameter in presence of a cosmological constant, Eur. Phys. J. C 76(4), 216 (2016)
CrossRef
ADS
Google scholar
|
[19] |
D. Spergel, R. Flauger, and R. Hlozek, Planck data reconsidered, Phys. Rev. D 91(2), 023518 (2015)
CrossRef
ADS
Google scholar
|
[20] |
E. M. L. Humphreys, M. J. Reid, J. M. Moran, L. J. Greenhill, and A. L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant, Astrophys. J. 775(1), 13 (2013)
CrossRef
ADS
Google scholar
|
[21] |
F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley- Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant, Mon. Not. R. Astron. Soc. 416(4), 3017 (2011)
CrossRef
ADS
Google scholar
|
[22] |
E. A. Kazin, J. Koda, C. Blake, N. Padmanabhan, S. Brough,
CrossRef
ADS
Google scholar
|
[23] |
T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby,
CrossRef
ADS
Google scholar
|
[24] |
C. H. Chuang, F. Prada, A. J. Cuesta,
CrossRef
ADS
Google scholar
|
[25] |
M. D. P. Hemantha, Y. Wang, and C. H. Chuang, Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies, Mon. Not. R. Astron. Soc. 445(4), 3737 (2014)
CrossRef
ADS
Google scholar
|
[26] |
C. Cheng and Q. G. Huang, An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets, Sci. China: Phys. Mech. Astron. 58(9), 599801 (2015)
CrossRef
ADS
Google scholar
|
[27] |
V. C. Busti, C. Clarkson, and M. Seikel, Evidence for a lower value for H0 from cosmic chronometers data? Mon. Not. R. Astron. Soc. 441(1), L11 (2014)
CrossRef
ADS
Google scholar
|
[28] |
M. Bonamente, M. K. Joy, S. J. LaRoque, J. E. Carlstrom, E. D. Reese, and K. S. Dawson, Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high redshift galaxy clusters, Astrophys. J. 647(1), 25 (2006)
CrossRef
ADS
Google scholar
|
[29] |
I. Ferreras, A. Pasquali, S. Malhotra, J. Rhoads, S. Cohen, R. Windhorst, N. Pirzkal, N. Grogin, A. M. Koekemoer, T. Lisker, N. Panagia, E. Daddi, and N. P. Hathi, Early-type galaxies in the PEARS survey: Probing the stellar populations at moderate redshift, Astrophys. J. 706(1), 158 (2009)
CrossRef
ADS
Google scholar
|
[30] |
M. Longhetti, P. Saracco, P. Severgnini, R. D. Ceca, F. Mannucci, R. Bender, N. Drory, G. Feulner, and U. Hopp, The Kormendy relation of massive elliptical galaxies at z’ 1:5. Evidence for size evolution? Mon. Not. R. Astron. Soc. 374(2), 614 (2007)
CrossRef
ADS
Google scholar
|
[31] |
E. Gaztañaga, A. Cabré, and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z), Mon. Not. R. Astron. Soc. 399(3), 1663 (2009)
CrossRef
ADS
Google scholar
|
[32] |
J. Simon, L. Verde, and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71(12), 123001 (2005)
CrossRef
ADS
Google scholar
|
[33] |
D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, Cosmic Chronometers: Constraining the equation of state of dark energy (I): H(z) measurements, J. Cosmol. Astropart. Phys. 2(02), 8 (2010)
CrossRef
ADS
Google scholar
|
[34] |
D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. S coccimarro, M. R. Blanton,
CrossRef
ADS
Google scholar
|
[35] |
J. A. S. Lima and J. V. Cunha, A 3% determination of H0 at intermediate redshifts, Astrophys. J. 781(2), L38 (2014)
CrossRef
ADS
Google scholar
|
[36] |
R. F. L. Holanda, V. C. Busti, and G. P. da Silva, Robustness of H0 determination at intermediate redshifts, Mon. Not. R. Astron. Soc. 443(1), L74 (2014)
CrossRef
ADS
Google scholar
|
[37] |
E. De Filippis, M. Sereno, M. W. Bautz, and G. Longo, Measuring the three-dimensional structure of galaxy clusters. 1. Application to a sample of 25 clusters, Astrophys. J. 625(1), 108 (2005)
CrossRef
ADS
Google scholar
|
[38] |
R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman,
CrossRef
ADS
Google scholar
|
[39] |
R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier,
CrossRef
ADS
Google scholar
|
[40] |
S. Jha, A. G. Riess, and R. P. Kirshner, Improved distances to type Ia supernovae with multicolor light curve shapes: MLCS2k2, Astrophys. J. 659(1), 122 (2007)
CrossRef
ADS
Google scholar
|
[41] |
J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain,
CrossRef
ADS
Google scholar
|
[42] |
N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah,
CrossRef
ADS
Google scholar
|
[43] |
B. A. Bassett and M. Kunz, Cosmic distance-duality as probe of exotic physics and acceleration, Phys. Rev. D 69(10), 101305 (2004)
CrossRef
ADS
Google scholar
|
[44] |
B. A. Bassett and M. Kunz, Cosmic acceleration vs. axion-photon mixing, Astrophys. J. 607(2), 661 (2004)
CrossRef
ADS
Google scholar
|
[45] |
M. Kunz and B. A. Bassett, A Tale of Two Distances, arXiv: astro-ph/0406013
|
[46] |
R. Nair, S. Jhingan, and D. Jain, Cosmic distance duality and cosmic transparency, J. Cosmol. Astropart. Phys. 1212, 028 (2012)
|
[47] |
H. Lampeitl, R. C. Nichol, H. J. Seo, T. Giannantonio, C. Shapiro,
CrossRef
ADS
Google scholar
|
[48] |
Z. Li, P. Wu, and H. Yu, Cosmological-modelindependent tests for the distance-duality relation from Galaxy Clusters and Type Ia Supernova, Astrophys. J. 729(1), L14 (2011)
CrossRef
ADS
Google scholar
|
[49] |
R. F. L. Holanda, J. A. S. Lima, and M. B. Ribeiro, Testing the distance-duality relation with galaxy clusters and type Ia supernovae, Astrophys. J. 722(2), L233 (2010)
CrossRef
ADS
Google scholar
|
[50] |
P. Wu, Z. Li, X. Liu, and H. Yu, Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation, Phys. Rev. D 92(2), 023520 (2015)
CrossRef
ADS
Google scholar
|
[51] |
P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd Ed., edited by P. R. Bevington and K. D. Robinson, MA: McGraw-Hill, 2003
|
[52] |
E. D. Reese, J. E. Carlstrom, M. Joy, J. J. Mohr, L. Grego, and W. L. Holzapfel, Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zel’dovich effect, Astrophys. J. 581(1), 53 (2002)
CrossRef
ADS
Google scholar
|
[53] |
B. S. Mason, S. T. Myers, and A. C. S. Readhead, A Measurement of H0 from the Sunyaev-Zel’dovich Effect, Astrophys. J. 555, L11 (2001)
CrossRef
ADS
Google scholar
|
[54] |
B. A. Bassett and R. Hlozek, Baryon acoustic oscillations, arXiv: 0910.5224
|
[55] |
C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch,
CrossRef
ADS
Google scholar
|
[56] |
X. Xu, A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, and C. K. McBride, Measuring DA and H at z= 0 : 35 from the SDSS DR7 LRGs using baryon acoustic oscillations, Mon. Not. R. Astron. Soc. 431(3), 2834 (2013)
CrossRef
ADS
Google scholar
|
[57] |
L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta,
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |