Effects of frustration on explosive synchronization
Xia Huang, Jian Gao, Yu-Ting Sun, Zhi-Gang Zheng, Can Xu
Effects of frustration on explosive synchronization
In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.
coupled phase oscillator / explosive synchronization / frustration
[1] |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001, pp 279–296
CrossRef
ADS
Google scholar
|
[2] |
J. Buck, Synchronous rhythmic flashing of fireflies (II), Q. Rev. Biol. 63(3), 265 (1988)
CrossRef
ADS
Google scholar
|
[3] |
B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: An analytical study, Appl. Phys. Lett. 92(23), 232504 (2008)
CrossRef
ADS
Google scholar
|
[4] |
I. Z. Kiss, Y. Zhai, and J. L. Hudson, Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)
CrossRef
ADS
Google scholar
|
[5] |
B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, and A. McRobie, Modeling walker synchronization on the Millennium Bridge, Phys. Rev. E 75(2), 021110 (2007)
CrossRef
ADS
Google scholar
|
[6] |
Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61, 6987 (2000)
CrossRef
ADS
Google scholar
|
[7] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer, 1984, pp 75–76
CrossRef
ADS
Google scholar
|
[8] |
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
CrossRef
ADS
Google scholar
|
[9] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef
ADS
Google scholar
|
[10] |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef
ADS
Google scholar
|
[11] |
F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Phys. Rep. 610, 1 (2016)
CrossRef
ADS
Google scholar
|
[12] |
J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef
ADS
Google scholar
|
[13] |
W. Q. Liu, Y. Wu, J. H. Xiao, and M. Zhan, Effects of frequency-degree correlation on synchronization transition in scale-free networks, Europhys. Lett. 101(3), 38002 (2013)
CrossRef
ADS
Google scholar
|
[14] |
T. K. D. M. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)
CrossRef
ADS
Google scholar
|
[15] |
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
CrossRef
ADS
Google scholar
|
[16] |
L. H. Zhu, L. Tian, and D. N. Shi, Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators, Phys. Rev. E 88(4), 042921 (2013)
CrossRef
ADS
Google scholar
|
[17] |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
|
[18] |
I. Leyva, I. Sendina-Nadal, J. A. Almendral, A. Navas, S. Olmi, and S. Boccaletti, Explosive synchronization in weighted complex networks, Phys. Rev. E 88(4), 042808 (2013)
CrossRef
ADS
Google scholar
|
[19] |
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
CrossRef
ADS
Google scholar
|
[20] |
C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)
CrossRef
ADS
Google scholar
|
[21] |
P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)
CrossRef
ADS
Google scholar
|
[22] |
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108, 168702 (2012)
CrossRef
ADS
Google scholar
|
[23] |
P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster Explosive Synchronization in Complex Networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef
ADS
Google scholar
|
[24] |
T. K. D. M. Peron and F. A. Rodrigues, Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations, Phys. Rev. E 86(5), 056108 (2012)
CrossRef
ADS
Google scholar
|
[25] |
B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Kuramoto model with frequency-degree correlations on complex networks, Phys. Rev. E 87(3), 032106 (2013)
CrossRef
ADS
Google scholar
|
[26] |
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of Attraction Determines Hysteresis in Explosive Synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef
ADS
Google scholar
|
[27] |
P. S. Skardal and A. Arenas, Disorder induces explosive synchronization, Phys. Rev. E 89(6), 062811 (2014)
CrossRef
ADS
Google scholar
|
[28] |
H. Bi, X. Hu, X. Zhang, Y. Zou, Z. Liu, and S. Guan, Explosive oscillation death in coupled Stuart-Landau oscillators, Europhys. Lett. 108(5), 50003 (2014)
CrossRef
ADS
Google scholar
|
[29] |
Y. Chen, Z. Cao, S. Wang, and G. Hu, Self-organized correlations lead to explosive synchronization, Phys. Rev. E 92(2), 022810 (2015)
CrossRef
ADS
Google scholar
|
[30] |
P. Ji, T. K. D. Peron, F. A. Rodrigues, and J. Kurths, Analysis of cluster explosive synchronization in complex networks, Phys. Rev. E 90(6), 062810 (2014)
CrossRef
ADS
Google scholar
|
[31] |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive Synchronization in Adaptive and Multilayer Networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef
ADS
Google scholar
|
[32] |
P. Ji, T. K. Peron, F. A. Rodrigues, and J. Kurths, Lowdimensional behavior of Kuramoto model with inertia in complex networks, Sci. Rep. 4, 4783 (2014)
CrossRef
ADS
Google scholar
|
[33] |
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
CrossRef
ADS
Google scholar
|
[34] |
R. S. Pinto and A. Saa, Explosive synchronization with partial degree-frequency correlation, Phys. Rev. E 91(2), 022818 (2015)
CrossRef
ADS
Google scholar
|
[35] |
S. Yoon, M. Sorbaro Sindaci, A. V. Goltsev, and J. F. F. Mendes, Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks, Phys. Rev. E 91(3), 032814 (2015)
CrossRef
ADS
Google scholar
|
[36] |
C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)
CrossRef
ADS
Google scholar
|
[37] |
S. Ma, H. Bi, Y. Zou, Z. Liu, and S. Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)
CrossRef
ADS
Google scholar
|
[38] |
S. Liu, G. Zhang, Z. He, and M. Zhan, Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect, Front. Phys. 10(3), 100503 (2015)
CrossRef
ADS
Google scholar
|
[39] |
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
CrossRef
ADS
Google scholar
|
[40] |
X. Huang, M. Zhan, F. Li, and Z. Zheng, Singleclustering synchronization in a ring of Kuramoto oscillators, J. Phys. A Math. Theor. 47(12), 125101 (2014)
CrossRef
ADS
Google scholar
|
[41] |
Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. 10, 0703 (2001)
|
[42] |
H. Sakaguchi, S. Shinmoto, and Y. kuramoto, Mutual entrainment in oscillator lattices with nonvariational type interaction, Prog. Theor. Phys. 79, 1096 (1988)
|
[43] |
E. Berg, E. Altman, and A. Auerbach, Singlet excitations in pyrochlore: A study of quantum frustration, Phys. Rev. Lett. 90(14), 147204 (2003)
CrossRef
ADS
Google scholar
|
[44] |
O. E. Omelćhenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109, 164101 (2012)
CrossRef
ADS
Google scholar
|
[45] |
C. Yokoi, L. Tang, and W. Chou, Ground state of the one-dimensional chiral XY model in a field,Phys. Rev. B 37(4), 2173 (1988)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |