Effects of frustration on explosive synchronization

Xia Huang, Jian Gao, Yu-Ting Sun, Zhi-Gang Zheng, Can Xu

PDF(3644 KB)
PDF(3644 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 110504. DOI: 10.1007/s11467-016-0597-y
Research article
Research article

Effects of frustration on explosive synchronization

Author information +
History +

Abstract

In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

Keywords

coupled phase oscillator / explosive synchronization / frustration

Cite this article

Download citation ▾
Xia Huang, Jian Gao, Yu-Ting Sun, Zhi-Gang Zheng, Can Xu. Effects of frustration on explosive synchronization. Front. Phys., 2016, 11(6): 110504 https://doi.org/10.1007/s11467-016-0597-y

References

[1]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001, pp 279–296
CrossRef ADS Google scholar
[2]
J. Buck, Synchronous rhythmic flashing of fireflies (II), Q. Rev. Biol. 63(3), 265 (1988)
CrossRef ADS Google scholar
[3]
B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: An analytical study, Appl. Phys. Lett. 92(23), 232504 (2008)
CrossRef ADS Google scholar
[4]
I. Z. Kiss, Y. Zhai, and J. L. Hudson, Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)
CrossRef ADS Google scholar
[5]
B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, and A. McRobie, Modeling walker synchronization on the Millennium Bridge, Phys. Rev. E 75(2), 021110 (2007)
CrossRef ADS Google scholar
[6]
Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61, 6987 (2000)
CrossRef ADS Google scholar
[7]
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer, 1984, pp 75–76
CrossRef ADS Google scholar
[8]
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
CrossRef ADS Google scholar
[9]
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef ADS Google scholar
[10]
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef ADS Google scholar
[11]
F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Phys. Rep. 610, 1 (2016)
CrossRef ADS Google scholar
[12]
J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef ADS Google scholar
[13]
W. Q. Liu, Y. Wu, J. H. Xiao, and M. Zhan, Effects of frequency-degree correlation on synchronization transition in scale-free networks, Europhys. Lett. 101(3), 38002 (2013)
CrossRef ADS Google scholar
[14]
T. K. D. M. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)
CrossRef ADS Google scholar
[15]
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
CrossRef ADS Google scholar
[16]
L. H. Zhu, L. Tian, and D. N. Shi, Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators, Phys. Rev. E 88(4), 042921 (2013)
CrossRef ADS Google scholar
[17]
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
[18]
I. Leyva, I. Sendina-Nadal, J. A. Almendral, A. Navas, S. Olmi, and S. Boccaletti, Explosive synchronization in weighted complex networks, Phys. Rev. E 88(4), 042808 (2013)
CrossRef ADS Google scholar
[19]
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
CrossRef ADS Google scholar
[20]
C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)
CrossRef ADS Google scholar
[21]
P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)
CrossRef ADS Google scholar
[22]
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108, 168702 (2012)
CrossRef ADS Google scholar
[23]
P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster Explosive Synchronization in Complex Networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef ADS Google scholar
[24]
T. K. D. M. Peron and F. A. Rodrigues, Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations, Phys. Rev. E 86(5), 056108 (2012)
CrossRef ADS Google scholar
[25]
B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Kuramoto model with frequency-degree correlations on complex networks, Phys. Rev. E 87(3), 032106 (2013)
CrossRef ADS Google scholar
[26]
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of Attraction Determines Hysteresis in Explosive Synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef ADS Google scholar
[27]
P. S. Skardal and A. Arenas, Disorder induces explosive synchronization, Phys. Rev. E 89(6), 062811 (2014)
CrossRef ADS Google scholar
[28]
H. Bi, X. Hu, X. Zhang, Y. Zou, Z. Liu, and S. Guan, Explosive oscillation death in coupled Stuart-Landau oscillators, Europhys. Lett. 108(5), 50003 (2014)
CrossRef ADS Google scholar
[29]
Y. Chen, Z. Cao, S. Wang, and G. Hu, Self-organized correlations lead to explosive synchronization, Phys. Rev. E 92(2), 022810 (2015)
CrossRef ADS Google scholar
[30]
P. Ji, T. K. D. Peron, F. A. Rodrigues, and J. Kurths, Analysis of cluster explosive synchronization in complex networks, Phys. Rev. E 90(6), 062810 (2014)
CrossRef ADS Google scholar
[31]
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive Synchronization in Adaptive and Multilayer Networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef ADS Google scholar
[32]
P. Ji, T. K. Peron, F. A. Rodrigues, and J. Kurths, Lowdimensional behavior of Kuramoto model with inertia in complex networks, Sci. Rep. 4, 4783 (2014)
CrossRef ADS Google scholar
[33]
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
CrossRef ADS Google scholar
[34]
R. S. Pinto and A. Saa, Explosive synchronization with partial degree-frequency correlation, Phys. Rev. E 91(2), 022818 (2015)
CrossRef ADS Google scholar
[35]
S. Yoon, M. Sorbaro Sindaci, A. V. Goltsev, and J. F. F. Mendes, Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks, Phys. Rev. E 91(3), 032814 (2015)
CrossRef ADS Google scholar
[36]
C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)
CrossRef ADS Google scholar
[37]
S. Ma, H. Bi, Y. Zou, Z. Liu, and S. Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)
CrossRef ADS Google scholar
[38]
S. Liu, G. Zhang, Z. He, and M. Zhan, Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect, Front. Phys. 10(3), 100503 (2015)
CrossRef ADS Google scholar
[39]
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
CrossRef ADS Google scholar
[40]
X. Huang, M. Zhan, F. Li, and Z. Zheng, Singleclustering synchronization in a ring of Kuramoto oscillators, J. Phys. A Math. Theor. 47(12), 125101 (2014)
CrossRef ADS Google scholar
[41]
Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. 10, 0703 (2001)
[42]
H. Sakaguchi, S. Shinmoto, and Y. kuramoto, Mutual entrainment in oscillator lattices with nonvariational type interaction, Prog. Theor. Phys. 79, 1096 (1988)
[43]
E. Berg, E. Altman, and A. Auerbach, Singlet excitations in pyrochlore: A study of quantum frustration, Phys. Rev. Lett. 90(14), 147204 (2003)
CrossRef ADS Google scholar
[44]
O. E. Omelćhenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109, 164101 (2012)
CrossRef ADS Google scholar
[45]
C. Yokoi, L. Tang, and W. Chou, Ground state of the one-dimensional chiral XY model in a field,Phys. Rev. B 37(4), 2173 (1988)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3644 KB)

Accesses

Citations

Detail

Sections
Recommended

/