Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium

Hao Liu , Wei Kang , Qi Zhang , Yin Zhang , Huilin Duan , X. T. He

Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 115206

PDF (2452KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 115206 DOI: 10.1007/s11467-016-0590-5
RESEARCH ARTICLE

Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium

Author information +
History +
PDF (2452KB)

Abstract

Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.

Keywords

shock structure / high Mach number / dense media

Cite this article

Download citation ▾
Hao Liu, Wei Kang, Qi Zhang, Yin Zhang, Huilin Duan, X. T. He. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys., 2016, 11(6): 115206 DOI:10.1007/s11467-016-0590-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. R. Bell, The acceleration of cosmic rays in shock fronts- I, Mon. Not. R. Astron. Soc. 182, 147 (1978)

[2]

S. J. Schwartz, E. Henley, J. Mitchell, and V. Krasnoselskikh, Electron temperature gradient scale at collisionless shocks, Phys. Rev. Lett. 107, 215002 (2011)

[3]

J. Hansen, M. Edwards, D. Froula, G. Gregori, A. Edens, and T. Ditmire, High Energy Density Laboratory Astrophysics, Chap. Laboratory Simulations of Supernova Shockwave Propagation, Springer Netherlands, Dordrecht, 2005, pp 61–67

[4]

M. Guidry and B. Messer, The physics and astrophysics of type Ia supernova explosions, Front. Phys. 8, 111 (2013)

[5]

T. J. B. Collins, A. Poludnenko, A. Cunningham, and A. Frank, Shock propagation in deuterium-tritiumsaturated foam, Physics of Plasmas 12, 062705 (2005)

[6]

J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. He, and S. Chen, Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence, Physics of Fluids 23, 125103 (2011)

[7]

J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Effect of compressibility on the small-scale structures in isotropic turbulence, Journal of Fluid Mechanics 713, 588 (2012)

[8]

J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108, 214505 (2012)

[9]

D. Rotman, Shock wave effects on a turbulent flow, Physics of Fluids A: Fluid Dynamics (1989–1993) 3, 1792 (1991)

[10]

T. G. Elizarova, A. A. Khokhlov, and S. Montero, Numerical simulation of shock wave structure in nitrogen, Physics of Fluids (1994–present) 19, 068102 (2007)

[11]

B. L. Holian and P. S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280, 2085 (1998)

[12]

A. B. Belonoshko, A. Rosengren, N. V. Skorodumova, S. Bastea, and B. Johansson, Shock wave propagation in dissociating low-zliquids: D2, J. Chem. Phys. 122, 124503 (2005)

[13]

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Atomistic simulations of shock-induced transformations and their orientation dependence in bcc fe single crystals, Phys. Rev. B 72, 064120 (2005)

[14]

D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White, Detonations at nanometer resolution using molecular dynamics, Phys. Rev. Lett. 70, 2174 (1993)

[15]

D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, Journal of Rational Mechanics and Analysis 2, 617 (1953)

[16]

H. W. Liepmann, R. Narasimha, and M. T. Chahine, Structure of a plane shock layer, Physics of Fluids 5, 1313 (1962)

[17]

B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the navier-stokes level, Phys. Rev. E 47, R24 (1993)

[18]

B. L. Holian, M. Mareschal, and R. Ravelo, Test of a new heat-flow equation for dense-fluid shock waves, J. Chem. Phys. 133, 114502 (2010)

[19]

B. L. Holian and M. Mareschal, Heat-flow equation motivated by the ideal-gas shock wave, Phys. Rev. E 82, 026707 (2010)

[20]

H. M. Mott-Smith, The solution of the boltzmann equation for a shock wave, Phys. Rev. 82, 885 (1951)

[21]

V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Shock wave structure in dense gases, Journal of Experimental and Theoretical Physics Letters 66, 99 (1997)

[22]

T. Ohwada, Structure of normal shock waves: Direct numerical analysis of the boltzmann equation for hard‐sphere molecules, Physics of Fluids A: Fluid Dynamics (1989–1993) 5, 217 (1993)

[23]

A.-G. Xu, G.-C. Zhang, Y.-B. Gan, F. Chen, and X.-J. Yu, Lattice boltzmann modeling and simulation of compressible flows, Front. Phys. 7, 582 (2012)

[24]

Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice bgk kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett. 103, 24003 (2013)

[25]

C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice boltzmann modeling of compressible flows, Phys. Rev. E 89, 013307 (2014)

[26]

A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice boltzmann kinetic model for combustion, Phys. Rev. E 91, 043306 (2015)

[27]

C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete boltzmann model for combustion, Combustion and Flame 164, 137 (2016)

[28]

G. G. Comisar, Bimodal distributions and plasma shock wave structure, Physics of Fluids (1958–1988) 6, 1263 (1963)

[29]

C. Muckenfuss, Some aspects of shock structure according to the bimodal model, Physics of Fluids (1958–1988) 5, 1325 (1962)

[30]

G. A. Bird, Aspects of the structure of strong shock waves, Physics of Fluids (1958–1988) 13, 1172 (1970)

[31]

B. Holian, Atomistic computer simulations of shock waves, Shock Waves 5, 149 (1995)

[32]

M. Linzer and D. F. Hornig, Structure of shock fronts in argon and nitrogen, Physics of Fluids 6, 1661 (1963)

[33]

P. Harris and H. N. Presles, Reflectivity of a 5.8 kbar shock front in water, J. Chem. Phys. 74, 6864 (1981)

[34]

G. R. Cowan and D. F. Hornig, The experimental determination of the thickness of a shock front in a gas, J. Chem. Phys. 18, 1008 (1950)

[35]

E. F. Greene and D. F. Hornig, The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen, J. Chem. Phys. 21, 617 (1953)

[36]

V. Klimenko and A. Dremin, Detonatsiya, Chernogolovka, Akad. Nauk, Moscow, SSSR, 1978

[37]

W. G. Hoover, Structure of a shock-wave front in a liquid, Phys. Rev. Lett. 42, 1531 (1979)

[38]

W. G. Hoover and C. G. Hoover, Shockwaves and local hydrodynamics; failure of the Navier–Stokes Equations, arXiv: 0909.2882 [physics.flu-dyn]

[39]

B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Shock-wave structure via nonequilibrium molecular dynamics and Navier–Stokes continuum mechanics, Phys. Rev. A 22, 2798 (1980)

[40]

E. Salomons and M. Mareschal, Usefulness of the burnett description of strong shock waves, Phys. Rev. Lett. 69, 269 (1992)

[41]

L. García-Colín, R. Velasco, and F. Uribe, Beyond the Navier–Stokes equations: Burnett hydrodynamics, Physics Reports 465, 149 (2008)

[42]

A. V. Bobylev, M. Bisi, M. P. Cassinari, and G. Spiga, Shock wave structure for generalized Burnett equations, Physics of Fluids (1994–present) 23, 030607 (2011)

[43]

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989

[44]

S. Plimpton, P. Crozier, and A. Thompson, Lammpslarge- scale atomic/molecular massively parallel simulator, Sandia National Laboratories (2007)

[45]

L. Verlet, Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules, Phys. Rev. 159, 98 (1967)

[46]

W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Shock compression of liquid helium to 56 gpa (560 kbar), Phys. Rev. Lett. 53, 1248 (1984)

[47]

W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93, 123116 (2008)

[48]

R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, An accurate intermolecular potential for helium, J. Chem. Phys. 70, 4330 (1979)

[49]

J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes (iv): the equations of hydrodynamics, J. Chem. Phys. 18, 817 (1950)

[50]

H. R. Rüter and R. Redmer, Ab Initio simulations for the ion-ion structure factor of warm dense aluminum, Phys. Rev. Lett. 112, 145007 (2014)

[51]

B. Lexow, M. Wickert, K. Thoma, F. Schafer, M. H. Poelchau, and T. Kenkmann, The extra-large light-gas gun of the fraunhofer emi: Applications for impact cratering research, Meteoritics Planetary Science 48, 3 (2013)

[52]

Z. Fan, M. Chen, Z. Dai, H.-B. Cai, S.-P. Zhu, W. Zhang, and X. He, A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion, arXiv: 1303.1252 (2013)

[53]

H. Shu, X. Huang, J. Ye, J. Wu, G. Jia, Z. Fang, Z. Xie, H. Zhou, and S. Fu, Measuring high pressure equation of state of polystyrene using laser driven shock wave, Euro. Phys. J. D 69, 1 (2015)

[54]

W. Tang, Shock Wave Physics, Science Press, 2011

[55]

Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Tech. Rep., DTIC Document, 1965

[56]

V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Shock wave structure in lennard-jones crystal via molecular dynamics, Phys. Rev. Lett. 83, 1175 (1999)

[57]

R. Becker, Stoßwelle und detonation, Zeitschrift für Physik 8, 321 (1922)

[58]

L. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6, Hydrodynamics, 1986

[59]

L. H. Thomas, Note on Becker’s theory of the shock front, J. Chem. Phys. 12, 449 (1944)

[60]

S. Pfalzner, An Introduction to Inertial Confinement Fusion, CRC Press, 2006

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2452KB)

976

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/