Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Hao Liu, Wei Kang, Qi Zhang, Yin Zhang, Huilin Duan, X. T. He
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.
shock structure / high Mach number / dense media
[1] |
A. R. Bell, The acceleration of cosmic rays in shock fronts- I, Mon. Not. R. Astron. Soc. 182, 147 (1978)
CrossRef
ADS
Google scholar
|
[2] |
S. J. Schwartz, E. Henley, J. Mitchell, and V. Krasnoselskikh, Electron temperature gradient scale at collisionless shocks, Phys. Rev. Lett. 107, 215002 (2011)
CrossRef
ADS
Google scholar
|
[3] |
J. Hansen, M. Edwards, D. Froula, G. Gregori, A. Edens, and T. Ditmire, High Energy Density Laboratory Astrophysics, Chap. Laboratory Simulations of Supernova Shockwave Propagation, Springer Netherlands, Dordrecht, 2005, pp 61–67
CrossRef
ADS
Google scholar
|
[4] |
M. Guidry and B. Messer, The physics and astrophysics of type Ia supernova explosions, Front. Phys. 8, 111 (2013)
CrossRef
ADS
Google scholar
|
[5] |
T. J. B. Collins, A. Poludnenko, A. Cunningham, and A. Frank, Shock propagation in deuterium-tritiumsaturated foam, Physics of Plasmas 12, 062705 (2005)
CrossRef
ADS
Google scholar
|
[6] |
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. He, and S. Chen, Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence, Physics of Fluids 23, 125103 (2011)
CrossRef
ADS
Google scholar
|
[7] |
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Effect of compressibility on the small-scale structures in isotropic turbulence, Journal of Fluid Mechanics 713, 588 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108, 214505 (2012)
CrossRef
ADS
Google scholar
|
[9] |
D. Rotman, Shock wave effects on a turbulent flow, Physics of Fluids A: Fluid Dynamics (1989–1993) 3, 1792 (1991)
CrossRef
ADS
Google scholar
|
[10] |
T. G. Elizarova, A. A. Khokhlov, and S. Montero, Numerical simulation of shock wave structure in nitrogen, Physics of Fluids (1994–present) 19, 068102 (2007)
|
[11] |
B. L. Holian and P. S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280, 2085 (1998)
CrossRef
ADS
Google scholar
|
[12] |
A. B. Belonoshko, A. Rosengren, N. V. Skorodumova, S. Bastea, and B. Johansson, Shock wave propagation in dissociating low-zliquids: D2, J. Chem. Phys. 122, 124503 (2005)
CrossRef
ADS
Google scholar
|
[13] |
K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Atomistic simulations of shock-induced transformations and their orientation dependence in bcc fe single crystals, Phys. Rev. B 72, 064120 (2005)
CrossRef
ADS
Google scholar
|
[14] |
D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White, Detonations at nanometer resolution using molecular dynamics, Phys. Rev. Lett. 70, 2174 (1993)
CrossRef
ADS
Google scholar
|
[15] |
D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, Journal of Rational Mechanics and Analysis 2, 617 (1953)
|
[16] |
H. W. Liepmann, R. Narasimha, and M. T. Chahine, Structure of a plane shock layer, Physics of Fluids 5, 1313 (1962)
CrossRef
ADS
Google scholar
|
[17] |
B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the navier-stokes level, Phys. Rev. E 47, R24 (1993)
CrossRef
ADS
Google scholar
|
[18] |
B. L. Holian, M. Mareschal, and R. Ravelo, Test of a new heat-flow equation for dense-fluid shock waves, J. Chem. Phys. 133, 114502 (2010)
CrossRef
ADS
Google scholar
|
[19] |
B. L. Holian and M. Mareschal, Heat-flow equation motivated by the ideal-gas shock wave, Phys. Rev. E 82, 026707 (2010)
CrossRef
ADS
Google scholar
|
[20] |
H. M. Mott-Smith, The solution of the boltzmann equation for a shock wave, Phys. Rev. 82, 885 (1951)
CrossRef
ADS
Google scholar
|
[21] |
V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Shock wave structure in dense gases, Journal of Experimental and Theoretical Physics Letters 66, 99 (1997)
CrossRef
ADS
Google scholar
|
[22] |
T. Ohwada, Structure of normal shock waves: Direct numerical analysis of the boltzmann equation for hard‐sphere molecules, Physics of Fluids A: Fluid Dynamics (1989–1993) 5, 217 (1993)
CrossRef
ADS
Google scholar
|
[23] |
A.-G. Xu, G.-C. Zhang, Y.-B. Gan, F. Chen, and X.-J. Yu, Lattice boltzmann modeling and simulation of compressible flows, Front. Phys. 7, 582 (2012)
CrossRef
ADS
Google scholar
|
[24] |
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice bgk kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett. 103, 24003 (2013)
CrossRef
ADS
Google scholar
|
[25] |
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice boltzmann modeling of compressible flows, Phys. Rev. E 89, 013307 (2014)
CrossRef
ADS
Google scholar
|
[26] |
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice boltzmann kinetic model for combustion, Phys. Rev. E 91, 043306 (2015)
CrossRef
ADS
Google scholar
|
[27] |
C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete boltzmann model for combustion, Combustion and Flame 164, 137 (2016)
CrossRef
ADS
Google scholar
|
[28] |
G. G. Comisar, Bimodal distributions and plasma shock wave structure, Physics of Fluids (1958–1988) 6, 1263 (1963)
|
[29] |
C. Muckenfuss, Some aspects of shock structure according to the bimodal model, Physics of Fluids (1958–1988) 5, 1325 (1962)
|
[30] |
G. A. Bird, Aspects of the structure of strong shock waves, Physics of Fluids (1958–1988) 13, 1172 (1970)
|
[31] |
B. Holian, Atomistic computer simulations of shock waves, Shock Waves 5, 149 (1995)
CrossRef
ADS
Google scholar
|
[32] |
M. Linzer and D. F. Hornig, Structure of shock fronts in argon and nitrogen, Physics of Fluids 6, 1661 (1963)
CrossRef
ADS
Google scholar
|
[33] |
P. Harris and H. N. Presles, Reflectivity of a 5.8 kbar shock front in water, J. Chem. Phys. 74, 6864 (1981)
CrossRef
ADS
Google scholar
|
[34] |
G. R. Cowan and D. F. Hornig, The experimental determination of the thickness of a shock front in a gas, J. Chem. Phys. 18, 1008 (1950)
CrossRef
ADS
Google scholar
|
[35] |
E. F. Greene and D. F. Hornig, The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen, J. Chem. Phys. 21, 617 (1953)
CrossRef
ADS
Google scholar
|
[36] |
V. Klimenko and A. Dremin, Detonatsiya, Chernogolovka, Akad. Nauk, Moscow, SSSR, 1978
|
[37] |
W. G. Hoover, Structure of a shock-wave front in a liquid, Phys. Rev. Lett. 42, 1531 (1979)
CrossRef
ADS
Google scholar
|
[38] |
W. G. Hoover and C. G. Hoover, Shockwaves and local hydrodynamics; failure of the Navier–Stokes Equations, arXiv: 0909.2882 [physics.flu-dyn]
|
[39] |
B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Shock-wave structure via nonequilibrium molecular dynamics and Navier–Stokes continuum mechanics, Phys. Rev. A 22, 2798 (1980)
CrossRef
ADS
Google scholar
|
[40] |
E. Salomons and M. Mareschal, Usefulness of the burnett description of strong shock waves, Phys. Rev. Lett. 69, 269 (1992)
CrossRef
ADS
Google scholar
|
[41] |
L. García-Colín, R. Velasco, and F. Uribe, Beyond the Navier–Stokes equations: Burnett hydrodynamics, Physics Reports 465, 149 (2008)
CrossRef
ADS
Google scholar
|
[42] |
A. V. Bobylev, M. Bisi, M. P. Cassinari, and G. Spiga, Shock wave structure for generalized Burnett equations, Physics of Fluids (1994–present) 23, 030607 (2011)
|
[43] |
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989
|
[44] |
S. Plimpton, P. Crozier, and A. Thompson, Lammpslarge- scale atomic/molecular massively parallel simulator, Sandia National Laboratories (2007)
|
[45] |
L. Verlet, Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules, Phys. Rev. 159, 98 (1967)
CrossRef
ADS
Google scholar
|
[46] |
W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Shock compression of liquid helium to 56 gpa (560 kbar), Phys. Rev. Lett. 53, 1248 (1984)
CrossRef
ADS
Google scholar
|
[47] |
W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93, 123116 (2008)
CrossRef
ADS
Google scholar
|
[48] |
R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, An accurate intermolecular potential for helium, J. Chem. Phys. 70, 4330 (1979)
CrossRef
ADS
Google scholar
|
[49] |
J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes (iv): the equations of hydrodynamics, J. Chem. Phys. 18, 817 (1950)
CrossRef
ADS
Google scholar
|
[50] |
H. R. Rüter and R. Redmer, Ab Initio simulations for the ion-ion structure factor of warm dense aluminum, Phys. Rev. Lett. 112, 145007 (2014)
CrossRef
ADS
Google scholar
|
[51] |
B. Lexow, M. Wickert, K. Thoma, F. Schafer, M. H. Poelchau, and T. Kenkmann, The extra-large light-gas gun of the fraunhofer emi: Applications for impact cratering research, Meteoritics Planetary Science 48, 3 (2013)
CrossRef
ADS
Google scholar
|
[52] |
Z. Fan, M. Chen, Z. Dai, H.-B. Cai, S.-P. Zhu, W. Zhang, and X. He, A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion, arXiv: 1303.1252 (2013)
|
[53] |
H. Shu, X. Huang, J. Ye, J. Wu, G. Jia, Z. Fang, Z. Xie, H. Zhou, and S. Fu, Measuring high pressure equation of state of polystyrene using laser driven shock wave, Euro. Phys. J. D 69, 1 (2015)
CrossRef
ADS
Google scholar
|
[54] |
W. Tang, Shock Wave Physics, Science Press, 2011
|
[55] |
Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Tech. Rep., DTIC Document, 1965
|
[56] |
V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Shock wave structure in lennard-jones crystal via molecular dynamics, Phys. Rev. Lett. 83, 1175 (1999)
CrossRef
ADS
Google scholar
|
[57] |
R. Becker, Stoßwelle und detonation, Zeitschrift für Physik 8, 321 (1922)
CrossRef
ADS
Google scholar
|
[58] |
L. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6, Hydrodynamics, 1986
|
[59] |
L. H. Thomas, Note on Becker’s theory of the shock front, J. Chem. Phys. 12, 449 (1944)
CrossRef
ADS
Google scholar
|
[60] |
S. Pfalzner, An Introduction to Inertial Confinement Fusion, CRC Press, 2006
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |