Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium

Hao Liu, Wei Kang, Qi Zhang, Yin Zhang, Huilin Duan, X. T. He

PDF(2452 KB)
PDF(2452 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 115206. DOI: 10.1007/s11467-016-0590-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium

Author information +
History +

Abstract

Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.

Keywords

shock structure / high Mach number / dense media

Cite this article

Download citation ▾
Hao Liu, Wei Kang, Qi Zhang, Yin Zhang, Huilin Duan, X. T. He. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Front. Phys., 2016, 11(6): 115206 https://doi.org/10.1007/s11467-016-0590-5

References

[1]
A. R. Bell, The acceleration of cosmic rays in shock fronts- I, Mon. Not. R. Astron. Soc. 182, 147 (1978)
CrossRef ADS Google scholar
[2]
S. J. Schwartz, E. Henley, J. Mitchell, and V. Krasnoselskikh, Electron temperature gradient scale at collisionless shocks, Phys. Rev. Lett. 107, 215002 (2011)
CrossRef ADS Google scholar
[3]
J. Hansen, M. Edwards, D. Froula, G. Gregori, A. Edens, and T. Ditmire, High Energy Density Laboratory Astrophysics, Chap. Laboratory Simulations of Supernova Shockwave Propagation, Springer Netherlands, Dordrecht, 2005, pp 61–67
CrossRef ADS Google scholar
[4]
M. Guidry and B. Messer, The physics and astrophysics of type Ia supernova explosions, Front. Phys. 8, 111 (2013)
CrossRef ADS Google scholar
[5]
T. J. B. Collins, A. Poludnenko, A. Cunningham, and A. Frank, Shock propagation in deuterium-tritiumsaturated foam, Physics of Plasmas 12, 062705 (2005)
CrossRef ADS Google scholar
[6]
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. He, and S. Chen, Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence, Physics of Fluids 23, 125103 (2011)
CrossRef ADS Google scholar
[7]
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Effect of compressibility on the small-scale structures in isotropic turbulence, Journal of Fluid Mechanics 713, 588 (2012)
CrossRef ADS Google scholar
[8]
J. Wang, Y. Shi, L.-P. Wang, Z. Xiao, X. T. He, and S. Chen, Scaling and statistics in three-dimensional compressible turbulence, Phys. Rev. Lett. 108, 214505 (2012)
CrossRef ADS Google scholar
[9]
D. Rotman, Shock wave effects on a turbulent flow, Physics of Fluids A: Fluid Dynamics (1989–1993) 3, 1792 (1991)
CrossRef ADS Google scholar
[10]
T. G. Elizarova, A. A. Khokhlov, and S. Montero, Numerical simulation of shock wave structure in nitrogen, Physics of Fluids (1994–present) 19, 068102 (2007)
[11]
B. L. Holian and P. S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280, 2085 (1998)
CrossRef ADS Google scholar
[12]
A. B. Belonoshko, A. Rosengren, N. V. Skorodumova, S. Bastea, and B. Johansson, Shock wave propagation in dissociating low-zliquids: D2, J. Chem. Phys. 122, 124503 (2005)
CrossRef ADS Google scholar
[13]
K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Atomistic simulations of shock-induced transformations and their orientation dependence in bcc fe single crystals, Phys. Rev. B 72, 064120 (2005)
CrossRef ADS Google scholar
[14]
D. W. Brenner, D. H. Robertson, M. L. Elert, and C. T. White, Detonations at nanometer resolution using molecular dynamics, Phys. Rev. Lett. 70, 2174 (1993)
CrossRef ADS Google scholar
[15]
D. Gilbarg and D. Paolucci, The structure of shock waves in the continuum theory of fluids, Journal of Rational Mechanics and Analysis 2, 617 (1953)
[16]
H. W. Liepmann, R. Narasimha, and M. T. Chahine, Structure of a plane shock layer, Physics of Fluids 5, 1313 (1962)
CrossRef ADS Google scholar
[17]
B. L. Holian, C. W. Patterson, M. Mareschal, and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the navier-stokes level, Phys. Rev. E 47, R24 (1993)
CrossRef ADS Google scholar
[18]
B. L. Holian, M. Mareschal, and R. Ravelo, Test of a new heat-flow equation for dense-fluid shock waves, J. Chem. Phys. 133, 114502 (2010)
CrossRef ADS Google scholar
[19]
B. L. Holian and M. Mareschal, Heat-flow equation motivated by the ideal-gas shock wave, Phys. Rev. E 82, 026707 (2010)
CrossRef ADS Google scholar
[20]
H. M. Mott-Smith, The solution of the boltzmann equation for a shock wave, Phys. Rev. 82, 885 (1951)
CrossRef ADS Google scholar
[21]
V. V. Zhakhovskii, K. Nishihara, and S. I. Anisimov, Shock wave structure in dense gases, Journal of Experimental and Theoretical Physics Letters 66, 99 (1997)
CrossRef ADS Google scholar
[22]
T. Ohwada, Structure of normal shock waves: Direct numerical analysis of the boltzmann equation for hard‐sphere molecules, Physics of Fluids A: Fluid Dynamics (1989–1993) 5, 217 (1993)
CrossRef ADS Google scholar
[23]
A.-G. Xu, G.-C. Zhang, Y.-B. Gan, F. Chen, and X.-J. Yu, Lattice boltzmann modeling and simulation of compressible flows, Front. Phys. 7, 582 (2012)
CrossRef ADS Google scholar
[24]
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice bgk kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, Europhys. Lett. 103, 24003 (2013)
CrossRef ADS Google scholar
[25]
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice boltzmann modeling of compressible flows, Phys. Rev. E 89, 013307 (2014)
CrossRef ADS Google scholar
[26]
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice boltzmann kinetic model for combustion, Phys. Rev. E 91, 043306 (2015)
CrossRef ADS Google scholar
[27]
C. Lin, A. Xu, G. Zhang, and Y. Li, Double-distributionfunction discrete boltzmann model for combustion, Combustion and Flame 164, 137 (2016)
CrossRef ADS Google scholar
[28]
G. G. Comisar, Bimodal distributions and plasma shock wave structure, Physics of Fluids (1958–1988) 6, 1263 (1963)
[29]
C. Muckenfuss, Some aspects of shock structure according to the bimodal model, Physics of Fluids (1958–1988) 5, 1325 (1962)
[30]
G. A. Bird, Aspects of the structure of strong shock waves, Physics of Fluids (1958–1988) 13, 1172 (1970)
[31]
B. Holian, Atomistic computer simulations of shock waves, Shock Waves 5, 149 (1995)
CrossRef ADS Google scholar
[32]
M. Linzer and D. F. Hornig, Structure of shock fronts in argon and nitrogen, Physics of Fluids 6, 1661 (1963)
CrossRef ADS Google scholar
[33]
P. Harris and H. N. Presles, Reflectivity of a 5.8 kbar shock front in water, J. Chem. Phys. 74, 6864 (1981)
CrossRef ADS Google scholar
[34]
G. R. Cowan and D. F. Hornig, The experimental determination of the thickness of a shock front in a gas, J. Chem. Phys. 18, 1008 (1950)
CrossRef ADS Google scholar
[35]
E. F. Greene and D. F. Hornig, The shape and thickness of shock fronts in argon, hydrogen, nitrogen, and oxygen, J. Chem. Phys. 21, 617 (1953)
CrossRef ADS Google scholar
[36]
V. Klimenko and A. Dremin, Detonatsiya, Chernogolovka, Akad. Nauk, Moscow, SSSR, 1978
[37]
W. G. Hoover, Structure of a shock-wave front in a liquid, Phys. Rev. Lett. 42, 1531 (1979)
CrossRef ADS Google scholar
[38]
W. G. Hoover and C. G. Hoover, Shockwaves and local hydrodynamics; failure of the Navier–Stokes Equations, arXiv: 0909.2882 [physics.flu-dyn]
[39]
B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Shock-wave structure via nonequilibrium molecular dynamics and Navier–Stokes continuum mechanics, Phys. Rev. A 22, 2798 (1980)
CrossRef ADS Google scholar
[40]
E. Salomons and M. Mareschal, Usefulness of the burnett description of strong shock waves, Phys. Rev. Lett. 69, 269 (1992)
CrossRef ADS Google scholar
[41]
L. García-Colín, R. Velasco, and F. Uribe, Beyond the Navier–Stokes equations: Burnett hydrodynamics, Physics Reports 465, 149 (2008)
CrossRef ADS Google scholar
[42]
A. V. Bobylev, M. Bisi, M. P. Cassinari, and G. Spiga, Shock wave structure for generalized Burnett equations, Physics of Fluids (1994–present) 23, 030607 (2011)
[43]
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989
[44]
S. Plimpton, P. Crozier, and A. Thompson, Lammpslarge- scale atomic/molecular massively parallel simulator, Sandia National Laboratories (2007)
[45]
L. Verlet, Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules, Phys. Rev. 159, 98 (1967)
CrossRef ADS Google scholar
[46]
W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Shock compression of liquid helium to 56 gpa (560 kbar), Phys. Rev. Lett. 53, 1248 (1984)
CrossRef ADS Google scholar
[47]
W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93, 123116 (2008)
CrossRef ADS Google scholar
[48]
R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, An accurate intermolecular potential for helium, J. Chem. Phys. 70, 4330 (1979)
CrossRef ADS Google scholar
[49]
J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes (iv): the equations of hydrodynamics, J. Chem. Phys. 18, 817 (1950)
CrossRef ADS Google scholar
[50]
H. R. Rüter and R. Redmer, Ab Initio simulations for the ion-ion structure factor of warm dense aluminum, Phys. Rev. Lett. 112, 145007 (2014)
CrossRef ADS Google scholar
[51]
B. Lexow, M. Wickert, K. Thoma, F. Schafer, M. H. Poelchau, and T. Kenkmann, The extra-large light-gas gun of the fraunhofer emi: Applications for impact cratering research, Meteoritics Planetary Science 48, 3 (2013)
CrossRef ADS Google scholar
[52]
Z. Fan, M. Chen, Z. Dai, H.-B. Cai, S.-P. Zhu, W. Zhang, and X. He, A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion, arXiv: 1303.1252 (2013)
[53]
H. Shu, X. Huang, J. Ye, J. Wu, G. Jia, Z. Fang, Z. Xie, H. Zhou, and S. Fu, Measuring high pressure equation of state of polystyrene using laser driven shock wave, Euro. Phys. J. D 69, 1 (2015)
CrossRef ADS Google scholar
[54]
W. Tang, Shock Wave Physics, Science Press, 2011
[55]
Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Tech. Rep., DTIC Document, 1965
[56]
V. V. Zhakhovskii, S. V. Zybin, K. Nishihara, and S. I. Anisimov, Shock wave structure in lennard-jones crystal via molecular dynamics, Phys. Rev. Lett. 83, 1175 (1999)
CrossRef ADS Google scholar
[57]
R. Becker, Stoßwelle und detonation, Zeitschrift für Physik 8, 321 (1922)
CrossRef ADS Google scholar
[58]
L. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6, Hydrodynamics, 1986
[59]
L. H. Thomas, Note on Becker’s theory of the shock front, J. Chem. Phys. 12, 449 (1944)
CrossRef ADS Google scholar
[60]
S. Pfalzner, An Introduction to Inertial Confinement Fusion, CRC Press, 2006
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2452 KB)

Accesses

Citations

Detail

Sections
Recommended

/