Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor

Hua-Ying Wang (王华英), Nan-Yan Xiong (熊南燕), Jun-Xiang Li (栗军香), Zhao Dong (董昭), Xia-Nan Jiang (江夏男), Feng Fan (范锋), Ya-Guang Geng (耿亚光), Qiao-Fen Zhu (朱巧芬)

PDF(18476 KB)
PDF(18476 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114206. DOI: 10.1007/s11467-016-0589-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor

Author information +
History +

Abstract

In order to improve the resolution of digital holography with a common-dimension charge-coupled device (CCD) sensor, the point spread functions are briefly derived for the commonly used and practical post-magnification, pre-magnification, and image-plane digital holographic microscopic systems. The ultimate resolutions of these systems are analyzed and compared. The results show that the ultimate lateral resolution of pre-magnification digital holography is superior to that of post-magnification digital holography in the same conditions. We also demonstrate that the ultimate lateral resolution of image-plane digital holography has no correlation with the photosensitive dimension of the CCD sensor, and it is not significantly related to the pixel size of the sensor. Moreover, both the ultimate resolution and the imaging quality of image-plane digital holography are superior to that of pre- and post-magnification digital holographic microscopy. High-resolution imaging, whose resolution is close to the ultimate resolution of the microscope objective, can be achieved by image-plane digital holography even with a submillimeter-dimension sensor. This system, by which perfect imaging can be achieved, is optimal for commonly used digital holographic microscopy. Experimental results demonstrate the correctness of the theoretical analysis.

Keywords

digital holography / digital holographic microscopy / image-plane digital holography / ultimate lateral resolution / small-dimension CCD

Cite this article

Download citation ▾
Hua-Ying Wang (王华英), Nan-Yan Xiong (熊南燕), Jun-Xiang Li (栗军香), Zhao Dong (董昭), Xia-Nan Jiang (江夏男), Feng Fan (范锋), Ya-Guang Geng (耿亚光), Qiao-Fen Zhu (朱巧芬). Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor. Front. Phys., 2016, 11(6): 114206 https://doi.org/10.1007/s11467-016-0589-y

References

[1]
P. Picart and J. C. Li, Digital Holography, Wiley, Weinheim, 2013
[2]
D. Merrill, R. An, J. Turek, and D. D. Nolte, Digital holography of intracellular dynamics to probe tissue physiology, Appl. Opt. 54(1), A89 (2015)
CrossRef ADS Google scholar
[3]
Baxter, Digital holography: Counting cells, Nat. Photonics 5(9), 513 (2011)
CrossRef ADS Google scholar
[4]
M. Rinehart, H. Park, and A. Wax, Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography, Biomed.Opt. Express 6(6), 2067 (2015)
CrossRef ADS Google scholar
[5]
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, Terahertz in-line digital holography of human hepatocellular carcinoma tissue, Sci. Rep. 5, 8445 (2015)
CrossRef ADS Google scholar
[6]
Y. Z. Zhang, D. Y. Wang, Y. X. Wang, and S. Q. Tao, Automatic compensation of total phase aberrations in digital holographic biological imaging, Chin. Phys. Lett. 28(11), 114209 (2011)
CrossRef ADS Google scholar
[7]
G. Di Caprio, A. El Mallahi, P. Ferraro, R. Dale, G. Coppola, B. Dale, G. Coppola, and F. Dubois, 4D tracking of clinical seminal samples for quantitative characterization of motility parameters, Biomed. Opt. Express 5(3), 690 (2014)
CrossRef ADS Google scholar
[8]
M. de Angelis, <?Pub Caret?>S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, Digitalholography refractive-index-profile measurement of phase gratings, Appl. Phys. Lett. 88(11), 111114 (2006)
CrossRef ADS Google scholar
[9]
M. R. McCartney, D. J. Smith, R. Hull, J. C. Bean, E. Voelkl, and B. Frost, Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography, Appl. Phys. Lett. 65(20), 2603 (1994)
CrossRef ADS Google scholar
[10]
C. Qin, J. Zhao, J. Di, L. Wang, Y. Yu, and W. Yuan, Visually testing the dynamic character of a blazed-angle adjustable grating by digital holographic microscopy, Appl. Opt. 48(5), 919 (2009)
CrossRef ADS Google scholar
[11]
T. Yanagawa, R. Abe, and Y. Hayasaki, Threedimensional mapping of fluorescent nanoparticles using incoherent digital holography, Opt. Lett. 40(14), 3312 (2015)
CrossRef ADS Google scholar
[12]
S. Hosokawa, T. Ozaki, K. Hayashi, N. Happo, M. Fujiwara, K. Horii, P. Fons, A. V. Kolobov, and J. Tominaga, Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge2Sb2Te5 found by X-ray fluorescence holography, Appl. Phys. Lett. 90(13), 131913 (2007)
CrossRef ADS Google scholar
[13]
D. Pejchang, S. Coëtmellec, G. Gréhan, M. Brunel, D. Lebrun, A. Chaari, T. Grosges, and D. Barchiesi, Recovering the size of nanoparticles by digital in-line holography, Opt. Express 23(14), 18351 (2015)
CrossRef ADS Google scholar
[14]
K. Goto and Y. Hayasaki, Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation, Opt. Lett. 40(14), 3344 (2015)
CrossRef ADS Google scholar
[15]
J. Gao, D. R. Guildenbecher, L. Engvall, P. L. Reu, and J. Chen, Refinement of particle detection by the hybrid method in digital in-line holography, Appl. Opt. 53(27), G130 (2014)
CrossRef ADS Google scholar
[16]
N. Verrier, C. Fournier, and T. Fournel, 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction, Appl. Opt. 54(16), 4996 (2015)
CrossRef ADS Google scholar
[17]
N. Verrier and C. Fournier, Digital holography superresolution for accurate three-dimensional reconstruction of particle holograms, Opt. Lett. 40(2), 217 (2015)
CrossRef ADS Google scholar
[18]
A. L. Gaunt and Z. Hadzibabic, Robust digital holography for ultra-cold atom trapping, Sci. Rep. 2, 721 (2011)
[19]
S. L. Pu, Q. H. Wang, K. F. Cen, L. Denis, and K. F. Ren, Application of digital holography to circle flow bed boiler measurement, Front. Energy 1(2), 218 (2007)
CrossRef ADS Google scholar
[20]
P. Gao, G. Pedrini, and W. Osten, Phase retrieval with resolution enhancement by using structured illumination, Opt. Lett. 38(24), 5204 (2013)
CrossRef ADS Google scholar
[21]
P. Gao, G. Pedrini, C. Zuo, and W. Osten, Phase retrieval using spatially modulated illumination, Opt. Lett. 39(12), 3615 (2014)
CrossRef ADS Google scholar
[22]
D. Lee and A. Weiner, Optical phase imaging using a synthetic aperture phase retrieval technique, Opt. Express 22(8), 9380 (2014)
CrossRef ADS Google scholar
[23]
S. T. Thurman and A. Bratcher, Multiplexed syntheticaperture digital holography, Appl. Opt. 54(3), 559 (2015)
CrossRef ADS Google scholar
[24]
C. J. Yuan, G. H. Situ, G. Pedrini, J. Ma, and W. Osten, Resolution improvement in digital holography by angular and polarization multiplexing, Appl. Opt. 50(7), B6 (2011)
CrossRef ADS Google scholar
[25]
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, Super-resolution in digital holography by a two-dimensional dynamic phase grating, Opt. Express 16(21), 17107 (2008)
CrossRef ADS Google scholar
[26]
H. Wahba and T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry, Appl. Opt. 48(8), 1573 (2009)
CrossRef ADS Google scholar
[27]
Y. C. Zhao, X. Y. Zhang, C. J. Yuan, S. P. Nie, Z. Q. Zhu, L. Wang, Y. Li, L. P. Gong, and S. T. Feng, Darkfield digital holographic microscopy by using vortex beam illumination, Acta Physica Sinica 63(22), 224202 (2014)
[28]
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia Sucerquia, Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit, Appl. Opt. 53(10), 2058 (2014)
CrossRef ADS Google scholar
[29]
H. Y. Wang, M. J. Yu, Y. N. Jiang, Q. F. Zhu, and F. F. Liu, Point spread function and lateral resolution analysis of digital holographic microscopy system, Opt. Commun. 322, 90 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(18476 KB)

Accesses

Citations

Detail

Sections
Recommended

/