Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor

Wang (王华英)Hua-Ying , Xiong (熊南燕)Nan-Yan , Li (栗军香)Jun-Xiang , Dong (董昭)Zhao , Jiang (江夏男)Xia-Nan , Fan (范锋)Feng , Geng (耿亚光)Ya-Guang , Zhu (朱巧芬)Qiao-Fen

Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114206

PDF (18476KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114206 DOI: 10.1007/s11467-016-0589-y
RESEARCH ARTICLE

Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor

Author information +
History +
PDF (18476KB)

Abstract

In order to improve the resolution of digital holography with a common-dimension charge-coupled device (CCD) sensor, the point spread functions are briefly derived for the commonly used and practical post-magnification, pre-magnification, and image-plane digital holographic microscopic systems. The ultimate resolutions of these systems are analyzed and compared. The results show that the ultimate lateral resolution of pre-magnification digital holography is superior to that of post-magnification digital holography in the same conditions. We also demonstrate that the ultimate lateral resolution of image-plane digital holography has no correlation with the photosensitive dimension of the CCD sensor, and it is not significantly related to the pixel size of the sensor. Moreover, both the ultimate resolution and the imaging quality of image-plane digital holography are superior to that of pre- and post-magnification digital holographic microscopy. High-resolution imaging, whose resolution is close to the ultimate resolution of the microscope objective, can be achieved by image-plane digital holography even with a submillimeter-dimension sensor. This system, by which perfect imaging can be achieved, is optimal for commonly used digital holographic microscopy. Experimental results demonstrate the correctness of the theoretical analysis.

Keywords

digital holography / digital holographic microscopy / image-plane digital holography / ultimate lateral resolution / small-dimension CCD

Cite this article

Download citation ▾
Wang (王华英)Hua-Ying, Xiong (熊南燕)Nan-Yan, Li (栗军香)Jun-Xiang, Dong (董昭)Zhao, Jiang (江夏男)Xia-Nan, Fan (范锋)Feng, Geng (耿亚光)Ya-Guang, Zhu (朱巧芬)Qiao-Fen. Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor. Front. Phys., 2016, 11(6): 114206 DOI:10.1007/s11467-016-0589-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Picart and J. C. Li, Digital Holography, Wiley, Weinheim, 2013

[2]

D. Merrill, R. An, J. Turek, and D. D. Nolte, Digital holography of intracellular dynamics to probe tissue physiology, Appl. Opt. 54(1), A89 (2015)

[3]

Baxter, Digital holography: Counting cells, Nat. Photonics 5(9), 513 (2011)

[4]

M. Rinehart, H. Park, and A. Wax, Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography, Biomed.Opt. Express 6(6), 2067 (2015)

[5]

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, Terahertz in-line digital holography of human hepatocellular carcinoma tissue, Sci. Rep. 5, 8445 (2015)

[6]

Y. Z. Zhang, D. Y. Wang, Y. X. Wang, and S. Q. Tao, Automatic compensation of total phase aberrations in digital holographic biological imaging, Chin. Phys. Lett. 28(11), 114209 (2011)

[7]

G. Di Caprio, A. El Mallahi, P. Ferraro, R. Dale, G. Coppola, B. Dale, G. Coppola, and F. Dubois, 4D tracking of clinical seminal samples for quantitative characterization of motility parameters, Biomed. Opt. Express 5(3), 690 (2014)

[8]

M. de Angelis, <?Pub Caret?>S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, Digitalholography refractive-index-profile measurement of phase gratings, Appl. Phys. Lett. 88(11), 111114 (2006)

[9]

M. R. McCartney, D. J. Smith, R. Hull, J. C. Bean, E. Voelkl, and B. Frost, Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography, Appl. Phys. Lett. 65(20), 2603 (1994)

[10]

C. Qin, J. Zhao, J. Di, L. Wang, Y. Yu, and W. Yuan, Visually testing the dynamic character of a blazed-angle adjustable grating by digital holographic microscopy, Appl. Opt. 48(5), 919 (2009)

[11]

T. Yanagawa, R. Abe, and Y. Hayasaki, Threedimensional mapping of fluorescent nanoparticles using incoherent digital holography, Opt. Lett. 40(14), 3312 (2015)

[12]

S. Hosokawa, T. Ozaki, K. Hayashi, N. Happo, M. Fujiwara, K. Horii, P. Fons, A. V. Kolobov, and J. Tominaga, Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge2Sb2Te5 found by X-ray fluorescence holography, Appl. Phys. Lett. 90(13), 131913 (2007)

[13]

D. Pejchang, S. Coëtmellec, G. Gréhan, M. Brunel, D. Lebrun, A. Chaari, T. Grosges, and D. Barchiesi, Recovering the size of nanoparticles by digital in-line holography, Opt. Express 23(14), 18351 (2015)

[14]

K. Goto and Y. Hayasaki, Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation, Opt. Lett. 40(14), 3344 (2015)

[15]

J. Gao, D. R. Guildenbecher, L. Engvall, P. L. Reu, and J. Chen, Refinement of particle detection by the hybrid method in digital in-line holography, Appl. Opt. 53(27), G130 (2014)

[16]

N. Verrier, C. Fournier, and T. Fournel, 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction, Appl. Opt. 54(16), 4996 (2015)

[17]

N. Verrier and C. Fournier, Digital holography superresolution for accurate three-dimensional reconstruction of particle holograms, Opt. Lett. 40(2), 217 (2015)

[18]

A. L. Gaunt and Z. Hadzibabic, Robust digital holography for ultra-cold atom trapping, Sci. Rep. 2, 721 (2011)

[19]

S. L. Pu, Q. H. Wang, K. F. Cen, L. Denis, and K. F. Ren, Application of digital holography to circle flow bed boiler measurement, Front. Energy 1(2), 218 (2007)

[20]

P. Gao, G. Pedrini, and W. Osten, Phase retrieval with resolution enhancement by using structured illumination, Opt. Lett. 38(24), 5204 (2013)

[21]

P. Gao, G. Pedrini, C. Zuo, and W. Osten, Phase retrieval using spatially modulated illumination, Opt. Lett. 39(12), 3615 (2014)

[22]

D. Lee and A. Weiner, Optical phase imaging using a synthetic aperture phase retrieval technique, Opt. Express 22(8), 9380 (2014)

[23]

S. T. Thurman and A. Bratcher, Multiplexed syntheticaperture digital holography, Appl. Opt. 54(3), 559 (2015)

[24]

C. J. Yuan, G. H. Situ, G. Pedrini, J. Ma, and W. Osten, Resolution improvement in digital holography by angular and polarization multiplexing, Appl. Opt. 50(7), B6 (2011)

[25]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, Super-resolution in digital holography by a two-dimensional dynamic phase grating, Opt. Express 16(21), 17107 (2008)

[26]

H. Wahba and T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry, Appl. Opt. 48(8), 1573 (2009)

[27]

Y. C. Zhao, X. Y. Zhang, C. J. Yuan, S. P. Nie, Z. Q. Zhu, L. Wang, Y. Li, L. P. Gong, and S. T. Feng, Darkfield digital holographic microscopy by using vortex beam illumination, Acta Physica Sinica 63(22), 224202 (2014)

[28]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia Sucerquia, Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit, Appl. Opt. 53(10), 2058 (2014)

[29]

H. Y. Wang, M. J. Yu, Y. N. Jiang, Q. F. Zhu, and F. F. Liu, Point spread function and lateral resolution analysis of digital holographic microscopy system, Opt. Commun. 322, 90 (2014)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (18476KB)

1104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/