Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor
Hua-Ying Wang (王华英), Nan-Yan Xiong (熊南燕), Jun-Xiang Li (栗军香), Zhao Dong (董昭), Xia-Nan Jiang (江夏男), Feng Fan (范锋), Ya-Guang Geng (耿亚光), Qiao-Fen Zhu (朱巧芬)
Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor
In order to improve the resolution of digital holography with a common-dimension charge-coupled device (CCD) sensor, the point spread functions are briefly derived for the commonly used and practical post-magnification, pre-magnification, and image-plane digital holographic microscopic systems. The ultimate resolutions of these systems are analyzed and compared. The results show that the ultimate lateral resolution of pre-magnification digital holography is superior to that of post-magnification digital holography in the same conditions. We also demonstrate that the ultimate lateral resolution of image-plane digital holography has no correlation with the photosensitive dimension of the CCD sensor, and it is not significantly related to the pixel size of the sensor. Moreover, both the ultimate resolution and the imaging quality of image-plane digital holography are superior to that of pre- and post-magnification digital holographic microscopy. High-resolution imaging, whose resolution is close to the ultimate resolution of the microscope objective, can be achieved by image-plane digital holography even with a submillimeter-dimension sensor. This system, by which perfect imaging can be achieved, is optimal for commonly used digital holographic microscopy. Experimental results demonstrate the correctness of the theoretical analysis.
digital holography / digital holographic microscopy / image-plane digital holography / ultimate lateral resolution / small-dimension CCD
[1] |
P. Picart and J. C. Li, Digital Holography, Wiley, Weinheim, 2013
|
[2] |
D. Merrill, R. An, J. Turek, and D. D. Nolte, Digital holography of intracellular dynamics to probe tissue physiology, Appl. Opt. 54(1), A89 (2015)
CrossRef
ADS
Google scholar
|
[3] |
Baxter, Digital holography: Counting cells, Nat. Photonics 5(9), 513 (2011)
CrossRef
ADS
Google scholar
|
[4] |
M. Rinehart, H. Park, and A. Wax, Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography, Biomed.Opt. Express 6(6), 2067 (2015)
CrossRef
ADS
Google scholar
|
[5] |
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, Terahertz in-line digital holography of human hepatocellular carcinoma tissue, Sci. Rep. 5, 8445 (2015)
CrossRef
ADS
Google scholar
|
[6] |
Y. Z. Zhang, D. Y. Wang, Y. X. Wang, and S. Q. Tao, Automatic compensation of total phase aberrations in digital holographic biological imaging, Chin. Phys. Lett. 28(11), 114209 (2011)
CrossRef
ADS
Google scholar
|
[7] |
G. Di Caprio, A. El Mallahi, P. Ferraro, R. Dale, G. Coppola, B. Dale, G. Coppola, and F. Dubois, 4D tracking of clinical seminal samples for quantitative characterization of motility parameters, Biomed. Opt. Express 5(3), 690 (2014)
CrossRef
ADS
Google scholar
|
[8] |
M. de Angelis, <?Pub Caret?>S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, Digitalholography refractive-index-profile measurement of phase gratings, Appl. Phys. Lett. 88(11), 111114 (2006)
CrossRef
ADS
Google scholar
|
[9] |
M. R. McCartney, D. J. Smith, R. Hull, J. C. Bean, E. Voelkl, and B. Frost, Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography, Appl. Phys. Lett. 65(20), 2603 (1994)
CrossRef
ADS
Google scholar
|
[10] |
C. Qin, J. Zhao, J. Di, L. Wang, Y. Yu, and W. Yuan, Visually testing the dynamic character of a blazed-angle adjustable grating by digital holographic microscopy, Appl. Opt. 48(5), 919 (2009)
CrossRef
ADS
Google scholar
|
[11] |
T. Yanagawa, R. Abe, and Y. Hayasaki, Threedimensional mapping of fluorescent nanoparticles using incoherent digital holography, Opt. Lett. 40(14), 3312 (2015)
CrossRef
ADS
Google scholar
|
[12] |
S. Hosokawa, T. Ozaki, K. Hayashi, N. Happo, M. Fujiwara, K. Horii, P. Fons, A. V. Kolobov, and J. Tominaga, Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge2Sb2Te5 found by X-ray fluorescence holography, Appl. Phys. Lett. 90(13), 131913 (2007)
CrossRef
ADS
Google scholar
|
[13] |
D. Pejchang, S. Coëtmellec, G. Gréhan, M. Brunel, D. Lebrun, A. Chaari, T. Grosges, and D. Barchiesi, Recovering the size of nanoparticles by digital in-line holography, Opt. Express 23(14), 18351 (2015)
CrossRef
ADS
Google scholar
|
[14] |
K. Goto and Y. Hayasaki, Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation, Opt. Lett. 40(14), 3344 (2015)
CrossRef
ADS
Google scholar
|
[15] |
J. Gao, D. R. Guildenbecher, L. Engvall, P. L. Reu, and J. Chen, Refinement of particle detection by the hybrid method in digital in-line holography, Appl. Opt. 53(27), G130 (2014)
CrossRef
ADS
Google scholar
|
[16] |
N. Verrier, C. Fournier, and T. Fournel, 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction, Appl. Opt. 54(16), 4996 (2015)
CrossRef
ADS
Google scholar
|
[17] |
N. Verrier and C. Fournier, Digital holography superresolution for accurate three-dimensional reconstruction of particle holograms, Opt. Lett. 40(2), 217 (2015)
CrossRef
ADS
Google scholar
|
[18] |
A. L. Gaunt and Z. Hadzibabic, Robust digital holography for ultra-cold atom trapping, Sci. Rep. 2, 721 (2011)
|
[19] |
S. L. Pu, Q. H. Wang, K. F. Cen, L. Denis, and K. F. Ren, Application of digital holography to circle flow bed boiler measurement, Front. Energy 1(2), 218 (2007)
CrossRef
ADS
Google scholar
|
[20] |
P. Gao, G. Pedrini, and W. Osten, Phase retrieval with resolution enhancement by using structured illumination, Opt. Lett. 38(24), 5204 (2013)
CrossRef
ADS
Google scholar
|
[21] |
P. Gao, G. Pedrini, C. Zuo, and W. Osten, Phase retrieval using spatially modulated illumination, Opt. Lett. 39(12), 3615 (2014)
CrossRef
ADS
Google scholar
|
[22] |
D. Lee and A. Weiner, Optical phase imaging using a synthetic aperture phase retrieval technique, Opt. Express 22(8), 9380 (2014)
CrossRef
ADS
Google scholar
|
[23] |
S. T. Thurman and A. Bratcher, Multiplexed syntheticaperture digital holography, Appl. Opt. 54(3), 559 (2015)
CrossRef
ADS
Google scholar
|
[24] |
C. J. Yuan, G. H. Situ, G. Pedrini, J. Ma, and W. Osten, Resolution improvement in digital holography by angular and polarization multiplexing, Appl. Opt. 50(7), B6 (2011)
CrossRef
ADS
Google scholar
|
[25] |
M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, Super-resolution in digital holography by a two-dimensional dynamic phase grating, Opt. Express 16(21), 17107 (2008)
CrossRef
ADS
Google scholar
|
[26] |
H. Wahba and T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry, Appl. Opt. 48(8), 1573 (2009)
CrossRef
ADS
Google scholar
|
[27] |
Y. C. Zhao, X. Y. Zhang, C. J. Yuan, S. P. Nie, Z. Q. Zhu, L. Wang, Y. Li, L. P. Gong, and S. T. Feng, Darkfield digital holographic microscopy by using vortex beam illumination, Acta Physica Sinica 63(22), 224202 (2014)
|
[28] |
E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia Sucerquia, Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit, Appl. Opt. 53(10), 2058 (2014)
CrossRef
ADS
Google scholar
|
[29] |
H. Y. Wang, M. J. Yu, Y. N. Jiang, Q. F. Zhu, and F. F. Liu, Point spread function and lateral resolution analysis of digital holographic microscopy system, Opt. Commun. 322, 90 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |