Shape effect of nanochannels on water mobility

Guo-Xi Nie, Yu Wang, Ji-Ping Huang

PDF(10464 KB)
PDF(10464 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114702. DOI: 10.1007/s11467-016-0587-0
Research article
Research article

Shape effect of nanochannels on water mobility

Author information +
History +

Abstract

Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm2. Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm2, different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm2, the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.

Keywords

molecular dynamics simulations / mobility / noncircular / nanochannel / water

Cite this article

Download citation ▾
Guo-Xi Nie, Yu Wang, Ji-Ping Huang. Shape effect of nanochannels on water mobility. Front. Phys., 2016, 11(6): 114702 https://doi.org/10.1007/s11467-016-0587-0

References

[1]
Karttunen2010JPCB. K. Kaszuba, T. Rog, K. Bryl, I. Vattulainen, and M. Karttunen, Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor, J. Phys. Chem. B 114, 8374 (2010)
CrossRef ADS Google scholar
[2]
B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294, 2353 (2001)
CrossRef ADS Google scholar
[3]
X. Gong, J. Li, H. Zhang, R. Wan, H. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101, 257801 (2008)
CrossRef ADS Google scholar
[4]
X. Y. Li, Y. C. Shi, Y. L. Yang, H. L. Du, R. H. Zhou, and Y. L. Zhao, How does water-nanotube interaction influence water flow through the nanochannel? J. Chem. Phys. 136, 175101 (2012)
CrossRef ADS Google scholar
[5]
M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: Present and future commercial applications, Science 339, 535 (2013)
CrossRef ADS Google scholar
[6]
D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12, 3602 (2012).
CrossRef ADS Google scholar
[7]
R. Z. Wan, J. Y. Li, H. J. Lu, and H. P. Fang, Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc. 127, 7166 (2005)
CrossRef ADS Google scholar
[8]
Q. W. Chen, L. Y. Meng, Q. K. Li, D. Wang, W. Guo, Z. G. Shuai, and L. Jiang, Water transport and purification in nanochannels controlled by asymmetric wettability, Small 7, 2225 (2011)
CrossRef ADS Google scholar
[9]
B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4, 751 (2011)
CrossRef ADS Google scholar
[10]
B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112, 1427 (2008)
CrossRef ADS Google scholar
[11]
X. J. Gong, J. C. Li, K. Xu, J. F.Wang, and H. Yang, A controllable molecular sieve for Na+ andK+ ions, J. Am. Chem. Soc. 132, 1873 (2010)
CrossRef ADS Google scholar
[12]
J. Dzubiella and J. P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys. 122, 234706 (2005)
CrossRef ADS Google scholar
[13]
T. Panczyk, T. P. Warzocha, and P. J. Camp, A magnetically controlled molecular nanocontainer as a drug delivery system: The effects of carbon nanotube and magnetic nanoparticle parameters from Monte Carlo simulations, J. Phys. Chem. C 114, 21299 (2010)
CrossRef ADS Google scholar
[14]
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9, 288 (2014)
CrossRef ADS Google scholar
[15]
S. Cambre, B. Schoeters, S. Luyckx, E. Goovaerts, and W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett. 104, 207401 (2010)
CrossRef ADS Google scholar
[16]
Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115, 13275 (2011)
CrossRef ADS Google scholar
[17]
H. Lu, J. Li, X. Gong, R. Wan, L. Zeng, and H. P. Fang, Water permeation and wavelike density distributions inside narrow nanochannels, Phys. Rev. B 77, 174115 (2008)
CrossRef ADS Google scholar
[18]
J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5, 351 (2011)
CrossRef ADS Google scholar
[19]
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188 (2001)
CrossRef ADS Google scholar
[20]
X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115, 4768 (2011)
CrossRef ADS Google scholar
[21]
J. Y. Li, X. J. Gong, H. J. Lu, D. Li, and R. H. Zhou, Electrostatic gating of a nanometer water channel, Proc. Natl. Acad. Sci. USA 104, 3687 (2007)
CrossRef ADS Google scholar
[22]
X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nature Nanotech. 2, 709 (2007)
CrossRef ADS Google scholar
[23]
Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10, 108702 (2015)
CrossRef ADS Google scholar
[24]
R. García-Fandiño and M. S. P. Sansom, Designing biomimetic pores based on carbon nanotubes, Proc. Natl. Acad. Sci. USA 109, 6939 (2012)
CrossRef ADS Google scholar
[25]
G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10, 108601 (2015)
CrossRef ADS Google scholar
[26]
X. Y. Zhou, F. M. Wu, J. L. Kou, X. C. Nie, Y. Liu, and H. J. Lu, Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube, J. Phys. Chem. B 117, 11681 (2013)
CrossRef ADS Google scholar
[27]
R. Qiao and N. R. Aluru, Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube, Nano Lett. 3, 1013 (2003)
CrossRef ADS Google scholar
[28]
G. X. Nie, Y. Wang, and J. P. Huang, Role of confinement in water solidification under electric fields, Front. Phys. 10, 106101 (2015)
CrossRef ADS Google scholar
[29]
T. Qiu and J. P. Huang, Unprecedentedly rapid transport of single-file rolling water molecules, Front. Phys. 10, 106102 (2015)
CrossRef ADS Google scholar
[30]
K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412, 802 (2001)
CrossRef ADS Google scholar
[31]
Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401, 534 (2005)
CrossRef ADS Google scholar
[32]
R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Anomalously immobilized water: A new water phase induced by confinement in nanotubes, Nano Lett. 3, 589 (2003)
CrossRef ADS Google scholar
[33]
S. R. Venna and M. A. Carreon, Metal organic framework membranes for carbon dioxide separation, Chem. Eng. Sci. 124, 3 (2015)
CrossRef ADS Google scholar
[34]
P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Q. Ma, B. Space, L. Wojtas, M. Eddaoudi, and M. J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495, 80 (2013)
CrossRef ADS Google scholar
[35]
S. Shirazian and S. N. Ashrafizadeh, Synthesis of substratemodified LTA zeolite membranes for dehydration of natural gas, Fuel 148, 112 (2015)
CrossRef ADS Google scholar
[36]
G. Sneddon, A. Greenaway, and H. H. P. Yiu, The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4, 1301873 (2014)
CrossRef ADS Google scholar
[37]
K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1, Nature 407, 599 (2000)
CrossRef ADS Google scholar
[38]
C. Q. Zhu, H. Li, and S. Meng, Transport behavior of water molecules through two-dimensional nanopores, J. Phys. Chem. 141, 18C528 (2014)
[39]
C. Q. Zhu, H. Li, X. C. Zeng, E. G. Wang, and S. Meng, Quantized water transport: Ideal desalination through graphyne-4 membrane, Sci. Rep. 3, 3163 (2013)
CrossRef ADS Google scholar
[40]
T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template, Adv. Mater. 16, 429 (2004)
CrossRef ADS Google scholar
[41]
F. Xu, J. E. Wharton, and C. R. Martin, Template synthesis of carbon nanotubes with diamond-shaped cross sections, Small 3, 1718 (2007)
CrossRef ADS Google scholar
[42]
J. Zang, A. Treibergs, Y. Han, and F. Liu, Geometric constant defining shape transitions of carbon nanotubes under pressure, Phys. Rev. Lett. 92, 105501 (2004)
CrossRef ADS Google scholar
[43]
W. H. Mu, J. S. Cao, and Z. C. Ou-Yang, Shape transition of unstrained flattest single-walled carbon nanotubes under pressure, J. Appl. Phys. 115, 044512 (2014)
CrossRef ADS Google scholar
[44]
A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, Shaping single walled nanotubes with an electron beam, Phys. Rev. B 77, 045410 (2008)
CrossRef ADS Google scholar
[45]
G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, Controlling cross section of carbon nanotubes via selective hydrogenation, J. Phys. Chem. C 114, 11753 (2010)
CrossRef ADS Google scholar
[46]
T. Qiu, X. W. Meng, and J. P. Huang, Nonstraight nanochannels transfer water faster than straight nanochannels, J. Phys. Chem. B 119, 1496 (2015)
CrossRef ADS Google scholar
[47]
L. Hao, J. Y. Su, and H. X. Guo, Water permeation through a charged channel, J. Phys. Chem. B 117, 7685 (2013)
CrossRef ADS Google scholar
[48]
B. Hess, C. Kutzner, D. Van De Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comp. 4, 435 (2008)
CrossRef ADS Google scholar
[49]
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91, 6269 (1987)
CrossRef ADS Google scholar
[50]
T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys. 98, 10089 (1993)
CrossRef ADS Google scholar
[51]
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984)
CrossRef ADS Google scholar
[52]
W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985)
CrossRef ADS Google scholar
[53]
Z. J. He, J. Zhou, X. H. Lu, and B. Corry, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C 117, 11412 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary
PDF(10464 KB)

Accesses

Citations

Detail

Sections
Recommended

/