Shape effect of nanochannels on water mobility
Guo-Xi Nie, Yu Wang, Ji-Ping Huang
Shape effect of nanochannels on water mobility
Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm2. Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm2, different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm2, the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.
molecular dynamics simulations / mobility / noncircular / nanochannel / water
[1] |
Karttunen2010JPCB. K. Kaszuba, T. Rog, K. Bryl, I. Vattulainen, and M. Karttunen, Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor, J. Phys. Chem. B 114, 8374 (2010)
CrossRef
ADS
Google scholar
|
[2] |
B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294, 2353 (2001)
CrossRef
ADS
Google scholar
|
[3] |
X. Gong, J. Li, H. Zhang, R. Wan, H. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101, 257801 (2008)
CrossRef
ADS
Google scholar
|
[4] |
X. Y. Li, Y. C. Shi, Y. L. Yang, H. L. Du, R. H. Zhou, and Y. L. Zhao, How does water-nanotube interaction influence water flow through the nanochannel? J. Chem. Phys. 136, 175101 (2012)
CrossRef
ADS
Google scholar
|
[5] |
M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: Present and future commercial applications, Science 339, 535 (2013)
CrossRef
ADS
Google scholar
|
[6] |
D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12, 3602 (2012).
CrossRef
ADS
Google scholar
|
[7] |
R. Z. Wan, J. Y. Li, H. J. Lu, and H. P. Fang, Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc. 127, 7166 (2005)
CrossRef
ADS
Google scholar
|
[8] |
Q. W. Chen, L. Y. Meng, Q. K. Li, D. Wang, W. Guo, Z. G. Shuai, and L. Jiang, Water transport and purification in nanochannels controlled by asymmetric wettability, Small 7, 2225 (2011)
CrossRef
ADS
Google scholar
|
[9] |
B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4, 751 (2011)
CrossRef
ADS
Google scholar
|
[10] |
B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112, 1427 (2008)
CrossRef
ADS
Google scholar
|
[11] |
X. J. Gong, J. C. Li, K. Xu, J. F.Wang, and H. Yang, A controllable molecular sieve for Na+ andK+ ions, J. Am. Chem. Soc. 132, 1873 (2010)
CrossRef
ADS
Google scholar
|
[12] |
J. Dzubiella and J. P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys. 122, 234706 (2005)
CrossRef
ADS
Google scholar
|
[13] |
T. Panczyk, T. P. Warzocha, and P. J. Camp, A magnetically controlled molecular nanocontainer as a drug delivery system: The effects of carbon nanotube and magnetic nanoparticle parameters from Monte Carlo simulations, J. Phys. Chem. C 114, 21299 (2010)
CrossRef
ADS
Google scholar
|
[14] |
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9, 288 (2014)
CrossRef
ADS
Google scholar
|
[15] |
S. Cambre, B. Schoeters, S. Luyckx, E. Goovaerts, and W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett. 104, 207401 (2010)
CrossRef
ADS
Google scholar
|
[16] |
Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115, 13275 (2011)
CrossRef
ADS
Google scholar
|
[17] |
H. Lu, J. Li, X. Gong, R. Wan, L. Zeng, and H. P. Fang, Water permeation and wavelike density distributions inside narrow nanochannels, Phys. Rev. B 77, 174115 (2008)
CrossRef
ADS
Google scholar
|
[18] |
J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5, 351 (2011)
CrossRef
ADS
Google scholar
|
[19] |
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188 (2001)
CrossRef
ADS
Google scholar
|
[20] |
X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115, 4768 (2011)
CrossRef
ADS
Google scholar
|
[21] |
J. Y. Li, X. J. Gong, H. J. Lu, D. Li, and R. H. Zhou, Electrostatic gating of a nanometer water channel, Proc. Natl. Acad. Sci. USA 104, 3687 (2007)
CrossRef
ADS
Google scholar
|
[22] |
X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nature Nanotech. 2, 709 (2007)
CrossRef
ADS
Google scholar
|
[23] |
Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10, 108702 (2015)
CrossRef
ADS
Google scholar
|
[24] |
R. García-Fandiño and M. S. P. Sansom, Designing biomimetic pores based on carbon nanotubes, Proc. Natl. Acad. Sci. USA 109, 6939 (2012)
CrossRef
ADS
Google scholar
|
[25] |
G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10, 108601 (2015)
CrossRef
ADS
Google scholar
|
[26] |
X. Y. Zhou, F. M. Wu, J. L. Kou, X. C. Nie, Y. Liu, and H. J. Lu, Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube, J. Phys. Chem. B 117, 11681 (2013)
CrossRef
ADS
Google scholar
|
[27] |
R. Qiao and N. R. Aluru, Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube, Nano Lett. 3, 1013 (2003)
CrossRef
ADS
Google scholar
|
[28] |
G. X. Nie, Y. Wang, and J. P. Huang, Role of confinement in water solidification under electric fields, Front. Phys. 10, 106101 (2015)
CrossRef
ADS
Google scholar
|
[29] |
T. Qiu and J. P. Huang, Unprecedentedly rapid transport of single-file rolling water molecules, Front. Phys. 10, 106102 (2015)
CrossRef
ADS
Google scholar
|
[30] |
K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412, 802 (2001)
CrossRef
ADS
Google scholar
|
[31] |
Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401, 534 (2005)
CrossRef
ADS
Google scholar
|
[32] |
R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Anomalously immobilized water: A new water phase induced by confinement in nanotubes, Nano Lett. 3, 589 (2003)
CrossRef
ADS
Google scholar
|
[33] |
S. R. Venna and M. A. Carreon, Metal organic framework membranes for carbon dioxide separation, Chem. Eng. Sci. 124, 3 (2015)
CrossRef
ADS
Google scholar
|
[34] |
P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Q. Ma, B. Space, L. Wojtas, M. Eddaoudi, and M. J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495, 80 (2013)
CrossRef
ADS
Google scholar
|
[35] |
S. Shirazian and S. N. Ashrafizadeh, Synthesis of substratemodified LTA zeolite membranes for dehydration of natural gas, Fuel 148, 112 (2015)
CrossRef
ADS
Google scholar
|
[36] |
G. Sneddon, A. Greenaway, and H. H. P. Yiu, The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4, 1301873 (2014)
CrossRef
ADS
Google scholar
|
[37] |
K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1, Nature 407, 599 (2000)
CrossRef
ADS
Google scholar
|
[38] |
C. Q. Zhu, H. Li, and S. Meng, Transport behavior of water molecules through two-dimensional nanopores, J. Phys. Chem. 141, 18C528 (2014)
|
[39] |
C. Q. Zhu, H. Li, X. C. Zeng, E. G. Wang, and S. Meng, Quantized water transport: Ideal desalination through graphyne-4 membrane, Sci. Rep. 3, 3163 (2013)
CrossRef
ADS
Google scholar
|
[40] |
T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template, Adv. Mater. 16, 429 (2004)
CrossRef
ADS
Google scholar
|
[41] |
F. Xu, J. E. Wharton, and C. R. Martin, Template synthesis of carbon nanotubes with diamond-shaped cross sections, Small 3, 1718 (2007)
CrossRef
ADS
Google scholar
|
[42] |
J. Zang, A. Treibergs, Y. Han, and F. Liu, Geometric constant defining shape transitions of carbon nanotubes under pressure, Phys. Rev. Lett. 92, 105501 (2004)
CrossRef
ADS
Google scholar
|
[43] |
W. H. Mu, J. S. Cao, and Z. C. Ou-Yang, Shape transition of unstrained flattest single-walled carbon nanotubes under pressure, J. Appl. Phys. 115, 044512 (2014)
CrossRef
ADS
Google scholar
|
[44] |
A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, Shaping single walled nanotubes with an electron beam, Phys. Rev. B 77, 045410 (2008)
CrossRef
ADS
Google scholar
|
[45] |
G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, Controlling cross section of carbon nanotubes via selective hydrogenation, J. Phys. Chem. C 114, 11753 (2010)
CrossRef
ADS
Google scholar
|
[46] |
T. Qiu, X. W. Meng, and J. P. Huang, Nonstraight nanochannels transfer water faster than straight nanochannels, J. Phys. Chem. B 119, 1496 (2015)
CrossRef
ADS
Google scholar
|
[47] |
L. Hao, J. Y. Su, and H. X. Guo, Water permeation through a charged channel, J. Phys. Chem. B 117, 7685 (2013)
CrossRef
ADS
Google scholar
|
[48] |
B. Hess, C. Kutzner, D. Van De Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comp. 4, 435 (2008)
CrossRef
ADS
Google scholar
|
[49] |
H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91, 6269 (1987)
CrossRef
ADS
Google scholar
|
[50] |
T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys. 98, 10089 (1993)
CrossRef
ADS
Google scholar
|
[51] |
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984)
CrossRef
ADS
Google scholar
|
[52] |
W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985)
CrossRef
ADS
Google scholar
|
[53] |
Z. J. He, J. Zhou, X. H. Lu, and B. Corry, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C 117, 11412 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |