Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

Ling-Fang Lin, Ling-Zhi Wu, Shuai Dong

PDF(769 KB)
PDF(769 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117502. DOI: 10.1007/s11467-016-0584-3

Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

Author information +
History +

Abstract

A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.

Keywords

manganite / Kondo-like effect / manganite-insulator composites / phase competition

Cite this article

Download citation ▾
Ling-Fang Lin, Ling-Zhi Wu, Shuai Dong. Interfacial phase competition induced Kondo-like effect in manganite-insulator composites. Front. Phys., 2016, 11(6): 117502 https://doi.org/10.1007/s11467-016-0584-3

References

[1]
H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(6), 107701 (2015)
CrossRef ADS Google scholar
[2]
E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep. 344(1), 1 (2001)
CrossRef ADS Google scholar
[3]
Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69(3), 797 (2006)
CrossRef ADS Google scholar
[4]
C. Şen, G. Alvarez, and E. Dagotto, Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect, Phys. Rev. Lett. 98(12), 127202 (2007)
CrossRef ADS Google scholar
[5]
C. Şen, G. Alvarez, and E. Dagotto, First order colossal magnetoresistance transitions in the two-orbital model for manganites, Phys. Rev. Lett. 105(9), 097203 (2010)
CrossRef ADS Google scholar
[6]
M. An, H. M. Zhang, Y. K. Weng, Y. Zhang, and S. Dong, Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3, Front. Phys. 11(2), 117501 (2016)
CrossRef ADS Google scholar
[7]
M. Staruch, H. Gao, P. X. Gao, and M. Jain, Low-field magnetoresistance in La0.67Sr0.33MnO3: ZnO composite film, Adv. Func. Mater. 22(17), 3591 (2012)
CrossRef ADS Google scholar
[8]
Y. K. Tang, X. F. Ge, X. F. Si, W. J. Zhao, Y. Wang, S. Dong, Y. Zhai, Y. Sui, W. H. Su, and C. C. Almasan, Influence of magnetic correlations on low-field magnetoresistance in La2/3Sr1/3MnO3/SrTiO3 composites, Phys. Status Solidi A 210(6), 1195 (2013)
CrossRef ADS Google scholar
[9]
Y. Gao, G. X. Cao, J. Zhang, and H. U. Habermeier, Intrinsic and precipitate-induced quantum corrections to conductivity in La2/3Sr1/3MnO3 thin films, Phys. Rev. B. 85(19), 195128 (2012)
CrossRef ADS Google scholar
[10]
G. X. Cao, J. C. Zhang, S. X Cao, C. Jing, and X. C. Shen, Magnetization step, history-dependence, and possible spin quantum transition in Pr5/8Ca3/8MnO3, Phys. Rev. B. 71(17), 174414 (2005)
CrossRef ADS Google scholar
[11]
J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37–49 (1964)
CrossRef ADS Google scholar
[12]
E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, Low-temperature resistivity minimum in ceramic manganites, J. Appl. Phys. 88, 2578–2582 (2000)
CrossRef ADS Google scholar
[13]
T. A. Costi, Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys, Phys. Rev. Lett. 85(7), 1504 (2000)
CrossRef ADS Google scholar
[14]
J. Zhang, Y. Xu, L. Yu, S. Cao, and Y. Zhao, Resistivity minimum and the electronic strongly correlation characteristic for La2/3Sr1/3MnO3 thin film, Physica B. 403(5), 1471–1473 (2008)
CrossRef ADS Google scholar
[15]
Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Evidence for charge Kondo effect in superconducting Tl-Doped PbTe, Phys. Rev. Lett. 94(15), 157002 (2005)
CrossRef ADS Google scholar
[16]
M. Ziese, Searching for quantum interference effects in La0.7Ca0.3MnO3 films on SrTiO3, Phys. Rev. B. 68(13), 132411 (2003)
CrossRef ADS Google scholar
[17]
D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Low-temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films, Phys. Rev.B. 65(9), 094407 (2002)
CrossRef ADS Google scholar
[18]
E. Syskakis, G. Choudalakis, and C. Papastaikoudis, Crossover between Kondo and electron–electron interaction effects in La0.75Sr0.20MnO3 manganite doped with Co impurities? J. Phys.: Condens. Matter 15(12), 7735 (2003)
CrossRef ADS Google scholar
[19]
L. Brey, Electronic phase separation in manganite-insulator interfaces, Phys. Rev. B 75(10), 104423 (2007)
CrossRef ADS Google scholar
[20]
H. W. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. S. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite Wires, Nano Lett. 13(8), 3749 (2013)
CrossRef ADS Google scholar
[21]
W. G. Wei, Y. Y. Zhu, Y. Bai, H. Liu, K. Du, K. Zhang, Y. F. Kou, J. Shao, W. B. Wang, D. L. Hou, S. Dong, L. F. Yin, and J. Shen, Direct observation of current-induced conductive path in colossal-electroresistance manganites thin films, Phys. Rev. B 93, 035111 (2016)
CrossRef ADS Google scholar
[22]
S. Dong, H. Zhu, X. Wu, and J. M. Liu, Microscopic simulation of the percolation of manganites, Appl. Phys. Lett. 86(2), 022501 (2005)
CrossRef ADS Google scholar
[23]
S. Dong, H. Zhu, and J. M. Liu, Dielectrophoresis model for the colossal electroresistance of phase-separated manganites, Phys. Rev. B. 76(13), 132409 (2007)
CrossRef ADS Google scholar
[24]
S. Ju, T. Y. Cai, and Z. Y. Li, Percolative magnetotransport and enhanced intergranular magnetoresistance in a correlated resistor network, Phys. Rev. B. 72(18), 184413 (2005)
CrossRef ADS Google scholar
[25]
L. F. Lin, X. Huang, and S. Dong, Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor-network model, Chin. Phys. B 22(11), 117313 (2013)
CrossRef ADS Google scholar
[26]
D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Ed. 3, Cambridge: Cambridge University Press, 2014
CrossRef ADS Google scholar
[27]
S. H. Tsai and D. P. Landau, Simulations of a classical spin system with competing superexchange and double-exchange interactions, J. Appl. Phys. 87(9), 5807 (2000)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(769 KB)

Accesses

Citations

Detail

Sections
Recommended

/