Interfacial phase competition induced Kondo-like effect in manganite-insulator composites
Ling-Fang Lin, Ling-Zhi Wu, Shuai Dong
Interfacial phase competition induced Kondo-like effect in manganite-insulator composites
A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.
manganite / Kondo-like effect / manganite-insulator composites / phase competition
[1] |
H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(6), 107701 (2015)
CrossRef
ADS
Google scholar
|
[2] |
E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep. 344(1), 1 (2001)
CrossRef
ADS
Google scholar
|
[3] |
Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69(3), 797 (2006)
CrossRef
ADS
Google scholar
|
[4] |
C. Şen, G. Alvarez, and E. Dagotto, Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect, Phys. Rev. Lett. 98(12), 127202 (2007)
CrossRef
ADS
Google scholar
|
[5] |
C. Şen, G. Alvarez, and E. Dagotto, First order colossal magnetoresistance transitions in the two-orbital model for manganites, Phys. Rev. Lett. 105(9), 097203 (2010)
CrossRef
ADS
Google scholar
|
[6] |
M. An, H. M. Zhang, Y. K. Weng, Y. Zhang, and S. Dong, Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3, Front. Phys. 11(2), 117501 (2016)
CrossRef
ADS
Google scholar
|
[7] |
M. Staruch, H. Gao, P. X. Gao, and M. Jain, Low-field magnetoresistance in La0.67Sr0.33MnO3: ZnO composite film, Adv. Func. Mater. 22(17), 3591 (2012)
CrossRef
ADS
Google scholar
|
[8] |
Y. K. Tang, X. F. Ge, X. F. Si, W. J. Zhao, Y. Wang, S. Dong, Y. Zhai, Y. Sui, W. H. Su, and C. C. Almasan, Influence of magnetic correlations on low-field magnetoresistance in La2/3Sr1/3MnO3/SrTiO3 composites, Phys. Status Solidi A 210(6), 1195 (2013)
CrossRef
ADS
Google scholar
|
[9] |
Y. Gao, G. X. Cao, J. Zhang, and H. U. Habermeier, Intrinsic and precipitate-induced quantum corrections to conductivity in La2/3Sr1/3MnO3 thin films, Phys. Rev. B. 85(19), 195128 (2012)
CrossRef
ADS
Google scholar
|
[10] |
G. X. Cao, J. C. Zhang, S. X Cao, C. Jing, and X. C. Shen, Magnetization step, history-dependence, and possible spin quantum transition in Pr5/8Ca3/8MnO3, Phys. Rev. B. 71(17), 174414 (2005)
CrossRef
ADS
Google scholar
|
[11] |
J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37–49 (1964)
CrossRef
ADS
Google scholar
|
[12] |
E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, Low-temperature resistivity minimum in ceramic manganites, J. Appl. Phys. 88, 2578–2582 (2000)
CrossRef
ADS
Google scholar
|
[13] |
T. A. Costi, Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys, Phys. Rev. Lett. 85(7), 1504 (2000)
CrossRef
ADS
Google scholar
|
[14] |
J. Zhang, Y. Xu, L. Yu, S. Cao, and Y. Zhao, Resistivity minimum and the electronic strongly correlation characteristic for La2/3Sr1/3MnO3 thin film, Physica B. 403(5), 1471–1473 (2008)
CrossRef
ADS
Google scholar
|
[15] |
Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Evidence for charge Kondo effect in superconducting Tl-Doped PbTe, Phys. Rev. Lett. 94(15), 157002 (2005)
CrossRef
ADS
Google scholar
|
[16] |
M. Ziese, Searching for quantum interference effects in La0.7Ca0.3MnO3 films on SrTiO3, Phys. Rev. B. 68(13), 132411 (2003)
CrossRef
ADS
Google scholar
|
[17] |
D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Low-temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films, Phys. Rev.B. 65(9), 094407 (2002)
CrossRef
ADS
Google scholar
|
[18] |
E. Syskakis, G. Choudalakis, and C. Papastaikoudis, Crossover between Kondo and electron–electron interaction effects in La0.75Sr0.20MnO3 manganite doped with Co impurities? J. Phys.: Condens. Matter 15(12), 7735 (2003)
CrossRef
ADS
Google scholar
|
[19] |
L. Brey, Electronic phase separation in manganite-insulator interfaces, Phys. Rev. B 75(10), 104423 (2007)
CrossRef
ADS
Google scholar
|
[20] |
H. W. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. S. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite Wires, Nano Lett. 13(8), 3749 (2013)
CrossRef
ADS
Google scholar
|
[21] |
W. G. Wei, Y. Y. Zhu, Y. Bai, H. Liu, K. Du, K. Zhang, Y. F. Kou, J. Shao, W. B. Wang, D. L. Hou, S. Dong, L. F. Yin, and J. Shen, Direct observation of current-induced conductive path in colossal-electroresistance manganites thin films, Phys. Rev. B 93, 035111 (2016)
CrossRef
ADS
Google scholar
|
[22] |
S. Dong, H. Zhu, X. Wu, and J. M. Liu, Microscopic simulation of the percolation of manganites, Appl. Phys. Lett. 86(2), 022501 (2005)
CrossRef
ADS
Google scholar
|
[23] |
S. Dong, H. Zhu, and J. M. Liu, Dielectrophoresis model for the colossal electroresistance of phase-separated manganites, Phys. Rev. B. 76(13), 132409 (2007)
CrossRef
ADS
Google scholar
|
[24] |
S. Ju, T. Y. Cai, and Z. Y. Li, Percolative magnetotransport and enhanced intergranular magnetoresistance in a correlated resistor network, Phys. Rev. B. 72(18), 184413 (2005)
CrossRef
ADS
Google scholar
|
[25] |
L. F. Lin, X. Huang, and S. Dong, Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor-network model, Chin. Phys. B 22(11), 117313 (2013)
CrossRef
ADS
Google scholar
|
[26] |
D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Ed. 3, Cambridge: Cambridge University Press, 2014
CrossRef
ADS
Google scholar
|
[27] |
S. H. Tsai and D. P. Landau, Simulations of a classical spin system with competing superexchange and double-exchange interactions, J. Appl. Phys. 87(9), 5807 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |