Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

Ling-Fang Lin , Ling-Zhi Wu , Shuai Dong

Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117502 -117502.

PDF (769KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117502 -117502. DOI: 10.1007/s11467-016-0584-3

Interfacial phase competition induced Kondo-like effect in manganite-insulator composites

Author information +
History +
PDF (769KB)

Abstract

A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.

Keywords

manganite / Kondo-like effect / manganite-insulator composites / phase competition

Cite this article

Download citation ▾
Ling-Fang Lin, Ling-Zhi Wu, Shuai Dong. Interfacial phase competition induced Kondo-like effect in manganite-insulator composites. Front. Phys., 2016, 11(6): 117502-117502 DOI:10.1007/s11467-016-0584-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(6), 107701 (2015)

[2]

E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep. 344(1), 1 (2001)

[3]

Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69(3), 797 (2006)

[4]

C. Şen, G. Alvarez, and E. Dagotto, Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect, Phys. Rev. Lett. 98(12), 127202 (2007)

[5]

C. Şen, G. Alvarez, and E. Dagotto, First order colossal magnetoresistance transitions in the two-orbital model for manganites, Phys. Rev. Lett. 105(9), 097203 (2010)

[6]

M. An, H. M. Zhang, Y. K. Weng, Y. Zhang, and S. Dong, Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3, Front. Phys. 11(2), 117501 (2016)

[7]

M. Staruch, H. Gao, P. X. Gao, and M. Jain, Low-field magnetoresistance in La0.67Sr0.33MnO3: ZnO composite film, Adv. Func. Mater. 22(17), 3591 (2012)

[8]

Y. K. Tang, X. F. Ge, X. F. Si, W. J. Zhao, Y. Wang, S. Dong, Y. Zhai, Y. Sui, W. H. Su, and C. C. Almasan, Influence of magnetic correlations on low-field magnetoresistance in La2/3Sr1/3MnO3/SrTiO3 composites, Phys. Status Solidi A 210(6), 1195 (2013)

[9]

Y. Gao, G. X. Cao, J. Zhang, and H. U. Habermeier, Intrinsic and precipitate-induced quantum corrections to conductivity in La2/3Sr1/3MnO3 thin films, Phys. Rev. B. 85(19), 195128 (2012)

[10]

G. X. Cao, J. C. Zhang, S. X Cao, C. Jing, and X. C. Shen, Magnetization step, history-dependence, and possible spin quantum transition in Pr5/8Ca3/8MnO3, Phys. Rev. B. 71(17), 174414 (2005)

[11]

J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37–49 (1964)

[12]

E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, Low-temperature resistivity minimum in ceramic manganites, J. Appl. Phys. 88, 2578–2582 (2000)

[13]

T. A. Costi, Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys, Phys. Rev. Lett. 85(7), 1504 (2000)

[14]

J. Zhang, Y. Xu, L. Yu, S. Cao, and Y. Zhao, Resistivity minimum and the electronic strongly correlation characteristic for La2/3Sr1/3MnO3 thin film, Physica B. 403(5), 1471–1473 (2008)

[15]

Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Evidence for charge Kondo effect in superconducting Tl-Doped PbTe, Phys. Rev. Lett. 94(15), 157002 (2005)

[16]

M. Ziese, Searching for quantum interference effects in La0.7Ca0.3MnO3 films on SrTiO3, Phys. Rev. B. 68(13), 132411 (2003)

[17]

D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Low-temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films, Phys. Rev.B. 65(9), 094407 (2002)

[18]

E. Syskakis, G. Choudalakis, and C. Papastaikoudis, Crossover between Kondo and electron–electron interaction effects in La0.75Sr0.20MnO3 manganite doped with Co impurities? J. Phys.: Condens. Matter 15(12), 7735 (2003)

[19]

L. Brey, Electronic phase separation in manganite-insulator interfaces, Phys. Rev. B 75(10), 104423 (2007)

[20]

H. W. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. S. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite Wires, Nano Lett. 13(8), 3749 (2013)

[21]

W. G. Wei, Y. Y. Zhu, Y. Bai, H. Liu, K. Du, K. Zhang, Y. F. Kou, J. Shao, W. B. Wang, D. L. Hou, S. Dong, L. F. Yin, and J. Shen, Direct observation of current-induced conductive path in colossal-electroresistance manganites thin films, Phys. Rev. B 93, 035111 (2016)

[22]

S. Dong, H. Zhu, X. Wu, and J. M. Liu, Microscopic simulation of the percolation of manganites, Appl. Phys. Lett. 86(2), 022501 (2005)

[23]

S. Dong, H. Zhu, and J. M. Liu, Dielectrophoresis model for the colossal electroresistance of phase-separated manganites, Phys. Rev. B. 76(13), 132409 (2007)

[24]

S. Ju, T. Y. Cai, and Z. Y. Li, Percolative magnetotransport and enhanced intergranular magnetoresistance in a correlated resistor network, Phys. Rev. B. 72(18), 184413 (2005)

[25]

L. F. Lin, X. Huang, and S. Dong, Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor-network model, Chin. Phys. B 22(11), 117313 (2013)

[26]

D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Ed. 3, Cambridge: Cambridge University Press, 2014

[27]

S. H. Tsai and D. P. Landau, Simulations of a classical spin system with competing superexchange and double-exchange interactions, J. Appl. Phys. 87(9), 5807 (2000)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (769KB)

1146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/