The role of microwaves in the enhancement of laser-induced plasma emission

Ali Khumaeni, Katsuaki Akaoka, Masabumi Miyabe, Ikuo Wakaida

PDF(713 KB)
PDF(713 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 114209. DOI: 10.1007/s11467-016-0581-6
RESEARCH ARTICLE
RESEARCH ARTICLE

The role of microwaves in the enhancement of laser-induced plasma emission

Author information +
History +

Abstract

We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 s, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm−3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs.

Keywords

laser-induced breakdown spectroscopy / LIBS / microwave-assisted laser-induced breakdown spectroscopy / MA-LIBS / enhancement of laser plasma emission

Cite this article

Download citation ▾
Ali Khumaeni, Katsuaki Akaoka, Masabumi Miyabe, Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys., 2016, 11(4): 114209 https://doi.org/10.1007/s11467-016-0581-6

References

[1]
D. A. Cremers and L. J. Radziemski, Handbook of Laser- Induced Breakdown Spectroscopy, Chichester: Wiley, 2006
CrossRef ADS Google scholar
[2]
V. Miziolek, Palleschi, and I. Schechter (<Eds/>.), Laser Induced Breakdown Spectroscopy, Cambridge: Cambridge University Press, 2006
[3]
Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[4]
R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mc- Nesby, and P. D. French, Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments, Spectrochim. Acta B 56(6), 777 (2001)
CrossRef ADS Google scholar
[5]
M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications, Spectrochim. Acta B 62(12), 1426 (2007)
CrossRef ADS Google scholar
[6]
R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)
CrossRef ADS Google scholar
[7]
M. O. Vieitez, J. Hedberg, O. Launila, and L. Berg, Elemental analysis of steel scrap metals and minerals by laser-induced breakdown spectroscopy, Spectrochim. Acta B 60(7-8), 920 (2005)
CrossRef ADS Google scholar
[8]
Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
CrossRef ADS Google scholar
[9]
A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, Remote material analysis of nuclear power station steam generator tubes by laserinduced breakdown spectroscopy, Spectrochim. Acta B 56(6), 821 (2001)
CrossRef ADS Google scholar
[10]
M. F. Bustamante, C. A. Rinaldi, and J. C. Ferrero, Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile, Spectrochim. Acta B 57(2), 303 (2002)
CrossRef ADS Google scholar
[11]
P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy, Spectrochim. Acta B 56(6), 887 (2001)
CrossRef ADS Google scholar
[12]
D. Body and B. L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy, Rev. Sci. Instrum. 72(3), 1625 (2001)
CrossRef ADS Google scholar
[13]
J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Reheating of a laser-produced plasma by a second pulse laser, Appl. Spectrosc. 45(9), 1419 (1991)
CrossRef ADS Google scholar
[14]
V. I. Babushok, J. L. Jr DeLucia, C. A. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)
CrossRef ADS Google scholar
[15]
F. F. Chen, X. J. Su, and W. D. Zhou, Effect of parameters on Si plasma emission in collinear double-pulse laserinduced breakdown spectroscopy, Front. Phys. 10(5), 104207 (2015)
CrossRef ADS Google scholar
[16]
R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)
CrossRef ADS Google scholar
[17]
Envimetrics, LAMPS Unit Manual, 2009
[18]
Y. Liu, M. Baudelet, and M. Richardson, Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics, J. Anal. At. Spectrom. 25(8), 1316 (2010)
CrossRef ADS Google scholar
[19]
B. Kearton and Y. Mattley, Laser-induced breakdown spectroscopy: Sparking new applications, Nat. Photonics 2(9), 537 (2008)
CrossRef ADS Google scholar
[20]
Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laserinduced breakdown spectroscopy, Spectrochim. Acta B 73, 89 (2012)
CrossRef ADS Google scholar
[21]
Y. Ikeda, A. Moon, and M. Kaneko, Development of microwave-enhanced spark-induced breakdown spectroscopy, Appl. Opt. 49(13), C95 (2010)
CrossRef ADS Google scholar
[22]
M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by a femto- and nano-second laser pulses, Appl. Phys. A 101(3), 545 (2010)
CrossRef ADS Google scholar
[23]
http://physics.nist.gov/PhysRefData/ASD/lines_form.html
[24]
V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana-J. Phys. 74(6), 983 (2010)
[25]
J. Zalach and St. Franke, Interative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp, J. Appl. Phys. 113, 043303 (2013)
CrossRef ADS Google scholar
[26]
A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)
CrossRef ADS Google scholar
[27]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, Electron density and temperature measurements in a laser produced carbonplasma, J. Appl. Phys. 82(5), 2140 (1997)
CrossRef ADS Google scholar
[28]
R. W. P. McWhirter, Spectral Intensities, in: Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard, New York: Academic, 1965

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(713 KB)

Accesses

Citations

Detail

Sections
Recommended

/