The role of microwaves in the enhancement of laser-induced plasma emission

Ali Khumaeni , Katsuaki Akaoka , Masabumi Miyabe , Ikuo Wakaida

Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 114209

PDF (713KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 114209 DOI: 10.1007/s11467-016-0581-6
RESEARCH ARTICLE

The role of microwaves in the enhancement of laser-induced plasma emission

Author information +
History +
PDF (713KB)

Abstract

We studied experimentally the effect of microwaves (MWs) on the enhancement of plasma emission achieved by laser-induced breakdown spectroscopy (LIBS). A laser plasma was generated on a calcium oxide pellet by a Nd:YAG laser (5 mJ, 532 nm, 8 ns) in reduced-pressure argon surrounding gas. A MW radiation (400 W) was injected into the laser plasma via a loop antenna placed immediately above the laser plasma to enhance the plasma emission. The results confirmed that when the electromagnetic field was introduced into the laser plasma region by the MWs, the lifetime of the plasma was extended from 50 to 500 s, similar to the MW duration. Furthermore, the plasma temperature and electron density increased to approximately 10900 K and 1.5×1018 cm−3, respectively and the size of the plasma emission was extended to 15 mm in diameter. As a result, the emission intensity of Ca lines obtained using LIBS with MWs was enhanced by approximately 200 times compared to the case of LIBS without MWs.

Keywords

laser-induced breakdown spectroscopy / LIBS / microwave-assisted laser-induced breakdown spectroscopy / MA-LIBS / enhancement of laser plasma emission

Cite this article

Download citation ▾
Ali Khumaeni, Katsuaki Akaoka, Masabumi Miyabe, Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys., 2016, 11(4): 114209 DOI:10.1007/s11467-016-0581-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. A. Cremers and L. J. Radziemski, Handbook of Laser- Induced Breakdown Spectroscopy, Chichester: Wiley, 2006

[2]

V. Miziolek, Palleschi, and I. Schechter (<Eds/>.), Laser Induced Breakdown Spectroscopy, Cambridge: Cambridge University Press, 2006

[3]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)

[4]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. Mc- Nesby, and P. D. French, Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments, Spectrochim. Acta B 56(6), 777 (2001)

[5]

M. Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications, Spectrochim. Acta B 62(12), 1426 (2007)

[6]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry, Spectrochim. Acta B 56(6), 637 (2001)

[7]

M. O. Vieitez, J. Hedberg, O. Launila, and L. Berg, Elemental analysis of steel scrap metals and minerals by laser-induced breakdown spectroscopy, Spectrochim. Acta B 60(7-8), 920 (2005)

[8]

Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)

[9]

A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, and J. Wright, Remote material analysis of nuclear power station steam generator tubes by laserinduced breakdown spectroscopy, Spectrochim. Acta B 56(6), 821 (2001)

[10]

M. F. Bustamante, C. A. Rinaldi, and J. C. Ferrero, Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile, Spectrochim. Acta B 57(2), 303 (2002)

[11]

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, and V. Zafiropulos, Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy, Spectrochim. Acta B 56(6), 887 (2001)

[12]

D. Body and B. L. Chadwick, Simultaneous elemental analysis system using laser induced breakdown spectroscopy, Rev. Sci. Instrum. 72(3), 1625 (2001)

[13]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, Reheating of a laser-produced plasma by a second pulse laser, Appl. Spectrosc. 45(9), 1419 (1991)

[14]

V. I. Babushok, J. L. Jr DeLucia, C. A. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement, Spectrochim. Acta B 61(9), 999 (2006)

[15]

F. F. Chen, X. J. Su, and W. D. Zhou, Effect of parameters on Si plasma emission in collinear double-pulse laserinduced breakdown spectroscopy, Front. Phys. 10(5), 104207 (2015)

[16]

R. Sattmann, V. Sturm, and R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses, J. Phys. D 28(10), 2181 (1995)

[17]

Envimetrics, LAMPS Unit Manual, 2009

[18]

Y. Liu, M. Baudelet, and M. Richardson, Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics, J. Anal. At. Spectrom. 25(8), 1316 (2010)

[19]

B. Kearton and Y. Mattley, Laser-induced breakdown spectroscopy: Sparking new applications, Nat. Photonics 2(9), 537 (2008)

[20]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laserinduced breakdown spectroscopy, Spectrochim. Acta B 73, 89 (2012)

[21]

Y. Ikeda, A. Moon, and M. Kaneko, Development of microwave-enhanced spark-induced breakdown spectroscopy, Appl. Opt. 49(13), C95 (2010)

[22]

M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by a femto- and nano-second laser pulses, Appl. Phys. A 101(3), 545 (2010)

[23]

http://physics.nist.gov/PhysRefData/ASD/lines_form.html

[24]

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana-J. Phys. 74(6), 983 (2010)

[25]

J. Zalach and St. Franke, Interative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp, J. Appl. Phys. 113, 043303 (2013)

[26]

A. De Giacomo, M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale, Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples, Spectrochim. Acta B 63(7), 805 (2008)

[27]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, Electron density and temperature measurements in a laser produced carbonplasma, J. Appl. Phys. 82(5), 2140 (1997)

[28]

R. W. P. McWhirter, Spectral Intensities, in: Plasma Diagnostic Techniques, edited by R. H. Huddlestone and S. L. Leonard, New York: Academic, 1965

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (713KB)

1112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/