Applications of the conformal transformation method in studies of composed superconducting systems

Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak

PDF(1810 KB)
PDF(1810 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117407. DOI: 10.1007/s11467-016-0579-0
research-article
research-article

Applications of the conformal transformation method in studies of composed superconducting systems

Author information +
History +

Abstract

A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-Tc superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates η (the ratio of hopping parameters) and η (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.

Keywords

high-temperature superconductivity / conformal transformation / pairing symmetry / critical temperature

Cite this article

Download citation ▾
Mateusz Krzyzosiak, Ryszard Gonczarek, Adam Gonczarek, Lucjan Jacak. Applications of the conformal transformation method in studies of composed superconducting systems. Front. Phys., 2016, 11(6): 117407 https://doi.org/10.1007/s11467-016-0579-0

References

[1]
P. Monthoux and G. G. Lonzarich, p-wave and d-wave superconductivity in quasi-two-dimensional metals, Phys. Rev. B 59(22), 14598 (1999)
CrossRef ADS Google scholar
[2]
P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity in quasi-two and three dimensions, Phys. Rev. B 63(5), 054529 (2001)
CrossRef ADS Google scholar
[3]
P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice, Phys. Rev. B 66(22), 224504 (2002)
CrossRef ADS Google scholar
[4]
A. Nazarenko and E. Dagotto, Possible phononic mechanism for dx2y2 superconductivity in the presence of short-range antiferromagnetic correlations, Phys. Rev. B 53(6), R2987 (1996)
CrossRef ADS Google scholar
[5]
D. Y. Xing, M. Liu, Y. G. Wang, and J. Dong, Analytic approach to the antiferromagnetic van Hove singularity model for high-Tc superconductors, Phys. Rev. B 60(13), 9775 (1999)
CrossRef ADS Google scholar
[6]
M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003)
CrossRef ADS Google scholar
[7]
R. Gonczarek, M. G ladysiewicz-Kudrawiec, The Van Hove Scenario in high-Tcsuperconductivity, Wrocław University of Technology Press, Wrocław, 2004 (in Polish)
[8]
R. Gonczarek and M. Krzyzosiak, Conformal transformation method and symmetry aspects of the group C4vin a model of high-Tc superconductors with anisotropic gap, Physica C 426(431), 278 (2005)
CrossRef ADS Google scholar
[9]
R. Gonczarek, L. Jacak, M. Krzyzosiak, and A. Gonczarek, Competition mechanism between singlet and triplet superconductivity in the tight-binding model with anisotropic attractive potential, Eur. Phys. J. B 49(2), 171 (2006)
CrossRef ADS Google scholar
[10]
R. Gonczarek, M. Krzyzosiak, L. Jacak, and A. Gonczarek, Coexistence of spin-singlet s- and d-wave and spin-triplet p-wave order parameters in anisotropic superconductors, phys. stat. sol. (b) 244, 3559 (2007)
[11]
R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Islands of stability of the d-wave order parameter in s-wave anisotropic superconductors, Eur. Phys. J. B 61(3), 299 (2008)
CrossRef ADS Google scholar
[12]
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Interplay between spin-singlet and spin-triplet order parameters in a model of an anisotropic superconductor with cuprate planes, J. Phys. Conf. Ser.152, 012057 (2009)
CrossRef ADS Google scholar
[13]
R. Szczęśniak and A. P. Durajski, The characterization of high-pressure superconducting state in Si2H6 compound: the strong-coupling description, J. Phys. Chem. Solids74(4), 641 (2013)
CrossRef ADS Google scholar
[14]
R. Szczęśniak, SDW antiferromagnetic phase in the two-dimensional Hubbard model: Eliashberg approach, Phys. Lett. A 373(4), 473 (2009)
CrossRef ADS Google scholar
[15]
W. Kohn and J. M. Luttinger, New mechanism for superconductivity, Phys. Rev. Lett. 15(12), 524 (1965)
CrossRef ADS Google scholar
[16]
Y. A. Krotov, D. H. Lee, and A. V. Balatsky, Superconductivity of a metallic stripe embedded in an antiferromagnet, Phys. Rev. B 56(13), 8367 (1999)
CrossRef ADS Google scholar
[17]
M. Granath and H. Johannesson, One-dimensional electron liquid in an antiferromagnetic environment: Spin gap from magnetic correlations, Phys. Rev. Lett. 83(1), 199 (1999)
CrossRef ADS Google scholar
[18]
A. P. Durajski and R. Szczęśniak, Characterization of phonon-mediated superconductivity in lithium doping borocarbide, Solid State Sci. 42, 20 (2015)
CrossRef ADS Google scholar
[19]
A. P. Durajski, Phonon-mediated superconductivity in compressed NbH4 compound,Eur. Phys. J. B 87(9), 210 (2014)
CrossRef ADS Google scholar
[20]
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)
CrossRef ADS Google scholar
[21]
P. W. Anderson, The Theory of High-TcSuperconductivity in the Cuprates, Princeton University Press, 1997
[22]
L. D. Landau, The Theory of a Fermi Liquid, Zh. Eksp. Teor. Fiz. 80, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]
[23]
L. D. Landau, Oscillations in a Fermi liquid, Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101(1957)]
[24]
M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Conformal Transformation Method in Studies of High-TcSuperconductors--- Beyond the Van Hove Scenario, in: Superconductivity and Superconducting Wires, edited by D. Matteri and L. Futino, Nova Science Publishers, 2010, Ch. 5
[25]
R. Gonczarek, M. Krzyzosiak, and M. Mulak, Valuation of characteristic ratios for high-Tcsuperconductors with anisotropic gap in the conformal transformation method, J. Phys. A 37(18), 4899 (2004)
CrossRef ADS Google scholar
[26]
R. Gonczarek, M. Gładysiewicz, and M. Mulak, On possible formalism of anisotropic Fermi liquid and BCS-type superconductivity, Int. J. Mod. Phys. B 15(05), 491 (2001)
CrossRef ADS Google scholar
[27]
F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
CrossRef ADS Google scholar
[28]
R. Micnas, J. Ranniger, and S. Robaszkiewicz, Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys. 62(1), 113 (1990)
CrossRef ADS Google scholar
[29]
E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-structure trend in hole-doped cuprates and correlation with Trmc max, Phys. Rev. Lett. 87(4), 047003 (2001)
CrossRef ADS Google scholar
[30]
O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, LDA energy bands, low-energy hamiltonians, t’, t’’, t(k), and J, J. Phys. Chem. Solids 56(12), 1573 (1995)
CrossRef ADS Google scholar
[31]
O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liechtenstein, Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model J. Low Temp. Phys. 105(3-4), 285 (1996)
CrossRef ADS Google scholar
[32]
R. Gonczarek, M. G. ladysiewicz, and M. Mulak, Equilibrium states and thermodynamical properties of d-wave paired HTSC in the tightbinding model, phys. stat. sol. (b) 233, 351 (2002)
[33]
M. M. Maśka, M. Mierzejewski, B. Andrzejewski, M. L. Foo, R. J. Cava, and T. Klimczuk, Possible singlet-to-triplet pairing transition in NaxCoO2-yH2O, Phys. Rev. B 70, 144516 (2004)
CrossRef ADS Google scholar
[34]
J. Bouvier and J. Bok, The Gap Symmetry and Fluctuations in High TcSuperconductors, Eds. J. Bok, G. Deutscher, D. Pavuna, and S. Wolf, New York: Plenum Press, 1998, p. 37
[35]
R. S. Markiewicz, A survey of the Van Hove scenario for high-Tc superconductivity with special emphasis on pseudogaps and striped phases, J. Phys. Chem. Solids 58(8), 1179 (1997)
CrossRef ADS Google scholar
[36]
H. Q. Lin and J. E. Hirsch, Two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping, Phys. Rev. B 35(7), 3359 (1987)
CrossRef ADS Google scholar
[37]
M. Sigist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
CrossRef ADS Google scholar
[38]
H. Ghosh, Higher anisotropic d-wave symmetry in cuprate superconductors, J. Phys.: Condens. Matter 11(30), L371 (1999)
CrossRef ADS Google scholar
[39]
Q. Yuan and P. Thalmeier, BCS theory for s+g-wave superconductivity in borocarbides Y(Lu)Ni2B2C, Phys. Rev. B 68(17), 174501 (2003)
CrossRef ADS Google scholar
[40]
H. Shimahara and S. Hata, Superconductivity in a ferromagnetic layered compound, Phys. Rev. B 62(21), 14541 (2000)
CrossRef ADS Google scholar
[41]
J. González, Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model, Phys. Rev. B 63(2), 024502 (2000)
CrossRef ADS Google scholar
[42]
E. Ya. Sherman, Raman vertex in cuprates: Role of the extended Van Hove singularity, Phys. Rev. B 58(21), 14187 (1998)
CrossRef ADS Google scholar
[43]
R. Gonczarek and M. Krzyzosiak, On possibility of realization of d- or p-wave symmetry states in anisotropic superconductors, Acta Phys. Pol. A 109(4-5), 493 (2006)
CrossRef ADS Google scholar
[44]
R. Gonczarek and M. Krzyzosiak, On a model of superconductivity realized in the metallic phase of strongly correlated electrons revealing a first-order phase transition, Int. J. Mod. Phys. B 17(30), 5683 (2003)
CrossRef ADS Google scholar
[45]
R. Gonczarek and M. Krzyzosiak, Critical parameters in the superconducting singular Fermi liquid model, Physica C 445-448, 158 (2006)
CrossRef ADS Google scholar
[46]
A. P. Durajski, The anisotropic evolution of the energy gap in Bi2212 superconductor, Front. Phys. 11, 117406 (2016) (in press)
[47]
C. C. Tsuei, D. M. Newns, C. C. Chi, and P. C. Pattnaik, Anomalous isotope effect and Van Hove singularity in superconducting Cu oxides, Phys. Rev. Lett. 65(21), 2724 (1990)
CrossRef ADS Google scholar
[48]
C. C. Tsuei, D. M. Newns, C. C. Chi, and P. C. Pattnaik, Tsuei et al. reply, Phys. Rev. Lett. 68(7), 1091 (1992)
CrossRef ADS Google scholar
[49]
E. Dagotto, A. Nazarenko, and M. Boninsegni, Flat quasiparticle dispersion in the 2D t-Jmodel, Phys. Rev. Lett. 73(5), 728 (1994)
CrossRef ADS Google scholar
[50]
E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66(3), 763 (1994)
CrossRef ADS Google scholar
[51]
E. Dagotto, A. Nazarenko, and A. Moreo, Antiferromagnetic and van Hove scenarios for the cuprates: Taking the best of both worlds, Phys. Rev. Lett. 74(2), 310 (1995)
CrossRef ADS Google scholar
[52]
J. M. Getino, M. de Llano, and H. Rubio, Properties of the gap energy in the van Hove scenario of high-temperature superconductivity, Phys. Rev. B 48(1), 597 (1993)
CrossRef ADS Google scholar
[53]
R. S. Markiewicz, Van Hove excitons and high-Tcsuperconductivity (VI): Properties of the exitations, Physica C 168(1-2), 195 (1990)
CrossRef ADS Google scholar
[54]
R. S. Markiewicz, Van Hove excitons and high-Tcsuperconductivity (VI): Gap equation with pair breaking, Physica C 183, 303 (1991)
CrossRef ADS Google scholar
[55]
R. S. Markiewicz, C. Kusko, and V. Kidambi, Pinned Balseiro-Falicov model of tunneling and photoemission in the cuprates, Phys. Rev. B 60(1), 627 (1999)
CrossRef ADS Google scholar
[56]
H. H. Fertwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Takahashi and K. Kadowaki, Fermi surface of Bi2Sr2CaCu2O8, Phys. Rev. Lett. 84(19), 4449 (2000)
CrossRef ADS Google scholar
[57]
S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Dürr, M. Knupfer, J. Fink, G. Yang, S. Abell, and H. Berger, Joys and pitfalls of Fermi surface mapping in Bi2Sr2CaCu2O8+δ using angle resolved photoemission, Phys. Rev. Lett. 84(19), 4453 (2000)
CrossRef ADS Google scholar
[58]
K. Kuboki, Effect of band structure on the symmetry of superconducting states, J. Phys. Soc. Jpn. 70(9), 2698 (2001)
CrossRef ADS Google scholar
[59]
R. Gonczarek and M. Krzyzosiak, Some universal relations between the gap and thermodynamic functions plausible for various models of superconductors, phys. stat. sol. (b) 238, 29 (2003)
[60]
R. Gonczarek and M. Mulak, Enhancement of critical temperature of superconductors implied by the local fluctuation of EDOS, Phys. Lett. A 251(4), 262 (1999)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1810 KB)

Accesses

Citations

Detail

Sections
Recommended

/