Superconductivity well above room temperature in compressed MgH6
R. Szcz¸eśniak, A. P. Durajski
Superconductivity well above room temperature in compressed MgH6
It has been suggested that hydrogen-rich systems at high pressure may exhibit notably high super-conducting transition temperatures. One of the more interesting theoretical predictions was that hydrogen sulfide can be metallized and the high-temperature superconducting state can be induced. A record critical temperature (203 K) was later confirmed for H3S in an experiment. In this paper, we investigated, within the framework of the Eliashberg formalism, the properties of compressed MgH6, which is expected to be a very good candidate for room-temperature superconductivity. This applies particularly to the pressure range from 300 to 400 GPa, where the transition temperature is close to 400 K. Moreover, the estimated thermodynamic properties and the resulting dimensionless ratios exceed the predictions of the Bardeen–Cooper–Schrieffer theory. This behavior is attributed to the strong electron–phonon coupling and retardation effects existing in hydrogen-dominated materials under high pressure.
superconductors / hydrogen-rich compounds / high pressure / thermodynamic properties
[1] |
N. W. Ashcroft, Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21(26), 1748 (1968)
CrossRef
ADS
Google scholar
|
[2] |
N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)
CrossRef
ADS
Google scholar
|
[3] |
Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140(17), 174712 (2014)
CrossRef
ADS
Google scholar
|
[4] |
A. P. Durajski, R. Szczęśniak, and L. Pietronero, High-temperature study of superconducting hydrogen and deuterium sulfide, Annalen der Physik, (Berlin), 528, 358 (2016)
|
[5] |
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4, 6968 (2014)
CrossRef
ADS
Google scholar
|
[6] |
R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)
CrossRef
ADS
Google scholar
|
[7] |
A. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
CrossRef
ADS
Google scholar
|
[8] |
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. Eremets, A. Drozdov, I. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of 200 K superconducting phase of sulfur hydride system, arXiv: 1509.03156 (2015)
|
[9] |
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
CrossRef
ADS
Google scholar
|
[10] |
X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, Compressed sodalite-like MgH6 as a potential high-temperature superconductor, RSC Adv. 5, 59292 (2015)
CrossRef
ADS
Google scholar
|
[11] |
G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[12] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[13] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[14] |
G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP 11, 696 (1960)
|
[15] |
J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027 (1990)
CrossRef
ADS
Google scholar
|
[16] |
Szczȩśniak and T. P. Zemła, On the high-pressure superconducting phase in platinum hydride, Supercond. Sci. Technol. 28(8), 085018 (2015)
CrossRef
ADS
Google scholar
|
[17] |
R. Szczęśniak, A. P. Durajski, and P. W. Pach, On the thermodynamic properties of the Rb3C60 superconductor, Cryogenics 61, 38 (2014)
CrossRef
ADS
Google scholar
|
[18] |
R. Szczęśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
CrossRef
ADS
Google scholar
|
[19] |
P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 905, 1975 (1975)
CrossRef
ADS
Google scholar
|
[20] |
W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(2), 331 (1968)
CrossRef
ADS
Google scholar
|
[21] |
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162 (1957)
CrossRef
ADS
Google scholar
|
[22] |
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
CrossRef
ADS
Google scholar
|
[23] |
A. P. Durajski, R. Szczęśniak, and Y. Li, Non-BCS thermodynamic properties of H2SH2S superconductor, Physica C 515, 1 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |