Superconductivity well above room temperature in compressed MgH6

R. Szcz¸eśniak, A. P. Durajski

PDF(424 KB)
PDF(424 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 117406. DOI: 10.1007/s11467-016-0578-1

Superconductivity well above room temperature in compressed MgH6

Author information +
History +

Abstract

It has been suggested that hydrogen-rich systems at high pressure may exhibit notably high super-conducting transition temperatures. One of the more interesting theoretical predictions was that hydrogen sulfide can be metallized and the high-temperature superconducting state can be induced. A record critical temperature (203 K) was later confirmed for H3S in an experiment. In this paper, we investigated, within the framework of the Eliashberg formalism, the properties of compressed MgH6, which is expected to be a very good candidate for room-temperature superconductivity. This applies particularly to the pressure range from 300 to 400 GPa, where the transition temperature is close to 400 K. Moreover, the estimated thermodynamic properties and the resulting dimensionless ratios exceed the predictions of the Bardeen–Cooper–Schrieffer theory. This behavior is attributed to the strong electron–phonon coupling and retardation effects existing in hydrogen-dominated materials under high pressure.

Keywords

superconductors / hydrogen-rich compounds / high pressure / thermodynamic properties

Cite this article

Download citation ▾
R. Szcz¸eśniak, A. P. Durajski. Superconductivity well above room temperature in compressed MgH6. Front. Phys., 2016, 11(6): 117406 https://doi.org/10.1007/s11467-016-0578-1

References

[1]
N. W. Ashcroft, Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21(26), 1748 (1968)
CrossRef ADS Google scholar
[2]
N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)
CrossRef ADS Google scholar
[3]
Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, The metallization and superconductivity of dense hydrogen sulfide, J. Chem. Phys. 140(17), 174712 (2014)
CrossRef ADS Google scholar
[4]
A. P. Durajski, R. Szczęśniak, and L. Pietronero, High-temperature study of superconducting hydrogen and deuterium sulfide, Annalen der Physik, (Berlin), 528, 358 (2016)
[5]
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4, 6968 (2014)
CrossRef ADS Google scholar
[6]
R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides, Phys. Rev. B 91(22), 224513 (2015)
CrossRef ADS Google scholar
[7]
A. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
CrossRef ADS Google scholar
[8]
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. Eremets, A. Drozdov, I. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of 200 K superconducting phase of sulfur hydride system, arXiv: 1509.03156 (2015)
[9]
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
CrossRef ADS Google scholar
[10]
X. Feng, J. Zhang, G. Gao, H. Liu, and H. Wang, Compressed sodalite-like MgH6 as a potential high-temperature superconductor, RSC Adv. 5, 59292 (2015)
CrossRef ADS Google scholar
[11]
G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[12]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[13]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[14]
G. M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP 11, 696 (1960)
[15]
J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027 (1990)
CrossRef ADS Google scholar
[16]
Szczȩśniak and T. P. Zemła, On the high-pressure superconducting phase in platinum hydride, Supercond. Sci. Technol. 28(8), 085018 (2015)
CrossRef ADS Google scholar
[17]
R. Szczęśniak, A. P. Durajski, and P. W. Pach, On the thermodynamic properties of the Rb3C60 superconductor, Cryogenics 61, 38 (2014)
CrossRef ADS Google scholar
[18]
R. Szczęśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
CrossRef ADS Google scholar
[19]
P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 905, 1975 (1975)
CrossRef ADS Google scholar
[20]
W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(2), 331 (1968)
CrossRef ADS Google scholar
[21]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162 (1957)
CrossRef ADS Google scholar
[22]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)
CrossRef ADS Google scholar
[23]
A. P. Durajski, R. Szczęśniak, and Y. Li, Non-BCS thermodynamic properties of H2SH2S superconductor, Physica C 515, 1 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/