Gravitational form factors and nucleon spin structure

O. V. Teryaev

PDF(196 KB)
PDF(196 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 111207. DOI: 10.1007/s11467-016-0573-6
REVIEW ARTICLE
REVIEW ARTICLE

Gravitational form factors and nucleon spin structure

Author information +
History +

Abstract

Nucleon scattering by the classical gravitational field is described by the gravitational (energymomentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell–Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

Keywords

gravity / form factors / equivalence principle

Cite this article

Download citation ▾
O. V. Teryaev. Gravitational form factors and nucleon spin structure. Front. Phys., 2016, 11(5): 111207 https://doi.org/10.1007/s11467-016-0573-6

References

[1]
<?Pub Caret1?>I. Y. Kobzarev and L. B. Okun, Gravitational interaction of fermions, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 16, 1343 (1963)]
[2]
I. Yu. Kobzarev and V. I. Zakharov, Spin precession in a gravitational field, Ann. Phys. 37(1), 1 (1966)
CrossRef ADS Google scholar
[3]
S. Weinberg, Photons and gravitons in s matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135(4B), B1049 (1964)
CrossRef ADS Google scholar
[4]
H. Pagels, Energy-momentum structure form factors of particles, Phys. Rev. 144(4), 1250 (1966)
CrossRef ADS Google scholar
[5]
X. Ji, J. Tang, and P. Hoodbhoy, Spin structure of the nucleon in the asymptotic limit, Phys. Rev. Lett. 76(5), 740 (1996)
CrossRef ADS Google scholar
[6]
X. Ji, Gauge invariant decomposition of the nucleon spin, Phys. Rev. Lett. 78(4), 610 (1997)
CrossRef ADS Google scholar
[7]
O. V. Teryaev, Spin structure of nucleon and equivalence principle, arXiv: hep-ph/9904376 (1999)
[8]
S. J. Brodsky, M. Diehl, and D. S. Hwang, Light cone wave function representation of deeply virtual Compton scattering, Nucl. Phys. B 596(1-2), 99 (2001), arXiv: hep-ph/0009254
CrossRef ADS Google scholar
[9]
L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 4
[10]
L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, and V. B. Berestetskii, Relativistic Quantum Theory, Pergamon, 1971
[11]
L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 2
[12]
L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, 2013
[13]
I. B. Khriplovich, A spinning particle in a gravitational field, Zh. Eksp. Teor. Fiz. 96, 385 (1989)
[14]
S. B. Gerasimov, Dispersion sum rule for magnetic moments and spin dependence of photoabsorption cross-section, Yad. Fiz. 5, 1263 (1967)
[15]
F. W. Hehl and W. T. Ni, Inertial effects of a Dirac particle, Phys. Rev. D 42(6), 2045 (1990)
CrossRef ADS Google scholar
[16]
A. J. Silenko and O. V. Teryaev, Semiclassical limit for Dirac particles interaction with a gravitational field, Phys. Rev. D 71(6), 064016 (2005), arXiv: gr-qc/0407015
CrossRef ADS Google scholar
[17]
Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin dynamics in gravitational fields of rotating bodies and the equivalence principle, Phys. Rev. D 80(6), 064044 (2009), arXiv: 0907.4367 [gr-qc]
CrossRef ADS Google scholar
[18]
Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Dirac fermions in strong gravitational fields, Phys. Rev. D 84(2), 024025 (2011), arXiv: 1106.0173 [hep-th]
CrossRef ADS Google scholar
[19]
Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin in an arbitrary gravitational field, Phys. Rev. D 88(8), 084014 (2013), arXiv: 1308.4552 [gr-qc]
CrossRef ADS Google scholar
[20]
D. Choudhury, N. D. Hari Dass, and M. V. N. Murthy, Gravitational helicity flip for massive neutrinos and SN 1987 A, Class. Quantum Gravity 6(9), L167 (1989)
CrossRef ADS Google scholar
[21]
A. Y. Kamenshchik and O. V. Teryaev, Chaotic spin precession in anisotropic universes and fermionic dark matter, arXiv: 1510.08253 [gr-qc] (2015)
[22]
C. Misner, K. Thorne, and J. Wheeler, Gravitation, Freeman, 1973
[23]
S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, 1972
[24]
O. V. Teryaev, Spin structure of nucleon in QCD: Inclusive and exclusive processes, Prepared for International Conference on New Trends in High-Energy Physics: Experiment, Phenomenology, Theory, Yalta, Crimea, 22–29<Date>Sep.</Date> 2001
[25]
O. V. Teryaev, Sources of time reversal odd spin asymmetries in QCD, Czech. J. Phys. 53, 47 (2003), arXiv: hep-ph/0306301
[26]
K. A. Milton, Quantum corrections to stress tensors and conformal invariance, Phys. Rev. D 4(12), 3579 (1971)
CrossRef ADS Google scholar
[27]
K. A. Milton, Quantum-electrodynamic corrections to the gravitational interaction of the electron, Phys. Rev. D 15(2), 538 (1977)
CrossRef ADS Google scholar
[28]
F. A. Berends and R. Gastmans, Quantum electrodynamical corrections to graviton matter vertices, Ann. Phys. 98(1), 225 (1976)
CrossRef ADS Google scholar
[29]
S. J. Brodsky, D. S. Hwang, B. Q. Ma, and I. Schmidt, Light-cone representation of the spin and orbital angular momentum of relativistic composite systems, Nucl. Phys. B 593(1-2), 311 (2001)
CrossRef ADS Google scholar
[30]
M. Deka, T. Doi, Y. B. Yang, B. Chakraborty, S. J. Dong, T. Draper, M. Glatzmaier, M. Gong, H. W. Lin, K. F. Liu, D. Mankame, N. Mathur, and T. Streuer, Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D 91(1), 014505 (2015), arXiv: 1312.4816 [hep-lat]
CrossRef ADS Google scholar
[31]
O. V. Teryaev, Equivalence principle and partition of angular momenta in the nucleon, AIP Conf. Proc. 915, 260 (2007), arXiv: hep-ph/0612205
[32]
E. V. Luschevskaya, O. A. Kochetkov, O. V. Teryaev, and O. E. Solovjeva, π±and ρ0,±mesons in a strong magnetic field on the lattice, JETP Lett. 101(10), 674 (2015)
CrossRef ADS Google scholar
[33]
Z. Abidin and C. E. Carlson, Gravitational form factors of vector mesons in an AdS/QCD model, Phys. Rev. D 77(9), 095007 (2008), arXiv: 0801.3839 [hep-ph]
CrossRef ADS Google scholar
[34]
O. V. Teryaev, Nucleon spin and orbital structure: 20 years later, Mod. Phys. Lett. A 24, 2831 (2009)
CrossRef ADS Google scholar
[35]
A. V. Efremov and O. V. Teryaev, On high P(T) vector mesons spin alignment, Sov. J. Nucl. Phys. 36, 557 (1982) (Yad. Fiz. 36, 950 (1982))
[36]
A. V. Efremov and O. V. Teryaev, On the oscillations of the tensor spin structure function, arXiv: hep-ph/9910555 (1999)
[37]
A. V. Efremov, (HERMES Collaboration), First measurement of the tensor structure function b1 of the deuteron, Phys. Rev. Lett. 95(24), 242001 (2005), arXiv: hep-ex/0506018
CrossRef ADS Google scholar
[38]
O. V. Teryaev, Hadron spin and external fields, Int. J. Mod. Phys. Conf. Ser. 391560083 (2015)
[39]
L. Susskind, L. Thorlacius, and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48(8), 3743 (1993), arXiv: hep-th/9306069
CrossRef ADS Google scholar
[40]
X. Artru, M. Elchikh, J. M. Richard, J. Soffer, and O. V. Teryaev, Spin observables and spin structure functions: inequalities and dynamics, Phys. Rep. 470(1-2), 1 (2009), arXiv: 0802.0164 [hep-ph]
CrossRef ADS Google scholar
[41]
A. Vilenkin, The principle of mediocrity, arXiv: 1108.4990 [hep-th]
[42]
K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47(2), 401 (2001), arXiv: hep-ph/0106012
CrossRef ADS Google scholar
[43]
O. V. Teryaev, Analytic properties of hard exclusive amplitudes, hep-ph/0510031 (2005)
[44]
I. V. Anikin and O. V. Teryaev, Dispersion relations and subtractions in hard exclusive processes, Phys. Rev. D 76, 056007 (2007), arXiv: 0704.2185 [hep-ph]
CrossRef ADS Google scholar
[45]
I. R. Gabdrakhmanov and O. V. Teryaev, Analyticity and sum rules for photon GPDs, Phys. Lett. B 716(3-5), 417 (2012), arXiv: 1204.6471 [hep-ph]
CrossRef ADS Google scholar
[46]
M. Mai and P. Schweitzer, Energy momentum tensor, stability, and the D-term of Q-balls, Phys. Rev. D 86(7), 076001 (2012), arXiv: 1206.2632 [hep-ph]
CrossRef ADS Google scholar
[47]
M. Mai and P. Schweitzer, Radial excitations of Q-balls, and their D-term, Phys. Rev. D 86(9), 096002 (2012), arXiv: 1206.2930 [hep-ph]
CrossRef ADS Google scholar
[48]
O. Teryaev, Analyticity and higher twists, Nucl. Phys. B 245, 195 (2013), arXiv: 1309.1985 [hep-ph]
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 The Author(s). This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/