Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

Jiangping Hu, Jing Yuan

PDF(423 KB)
PDF(423 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 117404. DOI: 10.1007/s11467-016-0572-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

Author information +
History +

Abstract

Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A1gs-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-Tc superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-Tc superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-Tc superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-Tc superconductivity.

Keywords

iron-based superconductors / cuprates / unconventional superconductivity / high-temperature superconductors

Cite this article

Download citation ▾
Jiangping Hu, Jing Yuan. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity. Front. Phys., 2016, 11(5): 117404 https://doi.org/10.1007/s11467-016-0572-7

References

[1]
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based superconductor with LaO1-xFxFeAs (x= 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[2]
N. Wang, H. Hosono, and P. Dai, Iron-Based Superconductors: Materials, Properties and Mechanisms, Pan Stanford Publishing PTE Ltd., 2012
[3]
D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)
CrossRef ADS Google scholar
[4]
E. Dagotto, The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)
CrossRef ADS Google scholar
[5]
P. Dai, J. Hu, and E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors, Nat. Phys. 8(10), 709 (2012)
CrossRef ADS Google scholar
[6]
P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74(12), 124508 (2011)
CrossRef ADS Google scholar
[7]
J. Hu, Iron-based superconductors as odd parity superconductors, Phys. Rev. X 3(3), 031004 (2013)
CrossRef ADS Google scholar
[8]
N. Hao and J. Hu, Odd parity pairing and nodeless antiphase s in iron-based superconductors, Phys. Rev. B 89(4), 045144 (2014)
CrossRef ADS Google scholar
[9]
C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
CrossRef ADS Google scholar
[10]
D. J. Scalapino, The cuprate pairing mechanism, Science 284(5418), 1282 (1999)
CrossRef ADS Google scholar
[11]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
CrossRef ADS Google scholar
[12]
Q. Si and E. Abrahams, Strong correlations and magnetic frustration in the high-Tc iron pnictides, Phys. Rev. Lett. 101(7), 076401 (2008)
CrossRef ADS Google scholar
[13]
K. J. Seo, B. A. Bernevig, and J. P. Hu, Pairing symmetry in a two-orbital exchange coupling model of oxypnictides, Phys. Rev. Lett. 101(20), 206404 (2008)
CrossRef ADS Google scholar
[14]
C. Fang, Y. L. Wu, R. Thomale, B. A. Bernevig, and J. Hu, Robustness of s-wave pairing in electron-overdoped A1-yFe2-xSe2, Phys. Rev. X 1(1), 011009 (2011)
CrossRef ADS Google scholar
[15]
P. Richard, T. Qian, and H. Ding, ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism, arXiv: 1503.07269 (2015)
[16]
Q. Fan, W. H. Zhang, X. Liu, Y. J. Yan, M. Q. Ren, R. Peng, H. C. Xu, B. P. Xie, J. P. Hu, T. Zhang, and D. L. Feng, Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunneling microscopy, arXiv: 1504.02185 (2015)
[17]
X. H. Niu, R. Peng, H. C. Xu, Y. J. Yan, J. Jiang, D. F. Xu, T. L. Yu, Q. Song, Z. C. Huang, Y. X. Wang, B. P. Xie, X. F. Lu, N. Z. Wang, X. H. Chen, Z. Sun, and D. L. Feng, Surface electronic structure and isotropic superconducting gap in Li0.8Fe0.2OHFeSe, arXiv: 1506.02825 (2015)
[18]
L. Zhao, A. Liang, D. Yuan, Y. Hu, D. Liu, J. Huang, S. He, B. Shen, Y. Xu, X. Liu, L. Yu, G. Liu, H. Zhou, Yulong Huang, X. Dong, F. Zhou, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/ SrTiO3 films, arXiv: 1505.6361 (2015)
[19]
P. A. Lee and X. G. Wen, Spin-triplet p-wave pairing in a three-orbital model for iron pnictide superconductors, Phys. Rev. B 78(14), 144517 (2008)
CrossRef ADS Google scholar
[20]
V. Cvetkovic and O. Vafek, Space group symmetry, spin-orbit coupling, and the low-energy effective hamiltonian for iron-based superconductors, Phys. Rev. B 88(13), 134510 (2013)
CrossRef ADS Google scholar
[21]
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
CrossRef ADS Google scholar
[22]
Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
CrossRef ADS Google scholar
[23]
S. L. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
CrossRef ADS Google scholar
[24]
S. Y. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nat. Mater. 12(7), 634 (2013)
CrossRef ADS Google scholar
[25]
M. Xu, Q. Q. Ge, R. Peng, Z. R. Ye, J. Jiang, F. Chen, X. P. Shen, B. P. Xie, Y. Zhang, A. F. Wang, X. F. Wang, X. H. Chen, and D. L. Feng, Evidence for an s-wave superconducting gap in KxFe2-ySe2 from angle-resolved photoemission, Phys. Rev. B 85(22), 220504 (2012)
CrossRef ADS Google scholar
[26]
X. Liu, L. Zhao, S. He, J. He, D. Liu, D. Mou, B. Shen, Y. Hu, J. Huang, and X. J. Zhou, Electronic structure and superconductivity of FeSe-related superconductors, J. Phys.: Condens. Matter 27(18), 183201 (2015)
CrossRef ADS Google scholar
[27]
I. I. Mazin, Symmetry analysis of possible superconducting states in KxFe2Se2 superconductors, Phys. Rev. B 84(2), 024529 (2011)
CrossRef ADS Google scholar
[28]
F. F. Tafti, A. Ouellet, A. Juneau-Fecteau, S. Faucher, M. Lapointe-Major, N. Doiron-Leyraud, A. F. Wang, X. G. Luo, X. H. Chen, and L. Taillefer, Universal V-shaped temperature-pressure phase diagram in the iron-based superconductors KFe2As2, RbFe2As2, and CsFe2As2, Phys. Rev. B 91(5), 054511 (2015)
CrossRef ADS Google scholar
[29]
Y. Ota, K. Okazaki, Y. Kotani, T. Shimojima, W. Malaeb, S. Watanabe, C.T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, and S. Shin, Evidence for excluding the possibility of d-wave superconducting-gap symmetry in Ba-doped KFe2As2, Phys. Rev. B 89(8), 081103 (2014)
CrossRef ADS Google scholar
[30]
K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe, C. T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani, and S. Shin, Octet-line node structure of superconducting order parameter in KFe2As2, Science 337(6100), 1314 (2012)
CrossRef ADS Google scholar
[31]
Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, J. Jiang, M. Xu, B. P. Xie, and D. L. Feng, Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2, Nat. Phys. 8(5), 371 (2012)
CrossRef ADS Google scholar
[32]
X. Qiu, S. Y. Zhou, H. Zhang, B. Y. Pan, X. C. Hong, Y. F. Dai, M. J. Eom, J. S. Kim, Z. R. Ye, Y. Zhang, D. L. Feng, and S. Y. Li, Robust nodal superconductivity induced by isovalent doping in Ba(Fe1-xRux)2As2 and BaFe2(As1-xPx)2, Phys. Rev. X 2(1), 011010 (2012)
CrossRef ADS Google scholar
[33]
N. Bickers, D. J. Scalapino, and R. T. Scalettar, Cdw and sdw mediated pairing interactions, Int. J. Mod. Phys. B 01(03n04), 687 (1987)
[34]
M. Inui, S. Doniach, P. Hirschfeld, and A. Ruckenstein, Coexistence of antiferromagnetism and superconductivity in a mean-field theory of high-Tc superconductors, Phys. Rev. B 37(4), 2320 (1988)
CrossRef ADS Google scholar
[35]
C. Gros, D. Poilblanc, T. M. Rice, and F. C. Zhang, Superconductivity in correlated wavefunctions, Physica C153–155, 543 (1988)
CrossRef ADS Google scholar
[36]
G. Kotliar and J. Liu, Superexchange mechanism and d-wave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
CrossRef ADS Google scholar
[37]
W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schnhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84(1), 299 (2012)
CrossRef ADS Google scholar
[38]
F. C. Zhang and T. M. Rice, Effective hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)
CrossRef ADS Google scholar
[39]
S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino, Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides, New J. Phys. 11(2), 025016 (2009)
CrossRef ADS Google scholar
[40]
S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Evolution of the superconducting state of Fe-based compounds with doping, Phys. Rev. Lett. 107(14), 147002 (2011)
CrossRef ADS Google scholar
[41]
F. Wang, H. Zhai, and D. H. Lee, Nodes in the gap function of LaFePo, the gap function of the Fe(Se,Te) systems, and the STM signature of the s pairing, Phys. Rev. B 81(18), 184512 (2010)
CrossRef ADS Google scholar
[42]
T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, d-wave pairing from spin fluctuations in the KxFe2-ySe2 superconductors, Phys. Rev. B 83(10), 100515 (2011)
CrossRef ADS Google scholar
[43]
R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave superconductivity in strongly hole doped KxBa1-xFe2As2, Phys. Rev. Lett. 107(11), 117001 (2011)
CrossRef ADS Google scholar
[44]
J. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)
CrossRef ADS Google scholar
[45]
J. S. Davis and D. H. Lee, Concepts relating magnetic interactions, interwined electronic orders, and strongly correlated superconductivity, Proc. Natl. Acad. Sci. USA 110(44), 17623 (2013)
CrossRef ADS Google scholar
[46]
J. Hu, B. Xu, W. Liu, N. N. Hao, and Y. Wang, Unified minimum effective model of magnetic properties of iron-based superconductors, Phys. Rev. B 85(14), 144403 (2012)
CrossRef ADS Google scholar
[47]
F. Ma, W. Ji, J. Hu, Z.-Y. Lu, and T. Xiang, First-principles calculations of the electronic structure of tetragonal alpha-FeTe and alpha-FeSe crystals: Evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett. 102, 177003 (2009)
CrossRef ADS Google scholar
[48]
A. L. Wysocki, K. D. Belashchenko, and V. P. Antropov, Consistent model of magnetism in ferropnictides, Nat. Phys. 7(6), 485 (2011)
CrossRef ADS Google scholar
[49]
J. K. Glasbrenner, I. I. Mazin, H. Jeschke, P. J. Hirschfeld, and R. Valent, Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, arXiv: 1501.04946 (2015)
[50]
T. Miyake, T. Kosugi, S. Ishibashi, and K. Terakura, Electronic structure of novel superconductor Ca4Al2O6Fe2As2, J. Phys. Soc. Jpn. 79(12), 123713 (2010)
CrossRef ADS Google scholar
[51]
O. Andersen and L. Boeri, On the multi-orbital band structure and itinerant magnetism of iron-based superconductors, Annalen der Physik, 1, 8 (2011)
[52]
Z. P. Yin, K. Haule, and G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mater. 10(12), 932 (2011)
CrossRef ADS Google scholar
[53]
K. Suzuki, H. Usui, S. Iimura, Y. Sato, S. Matsuishi, H. Hosono, and K. Kuroki, Model of the electronic structure of electron-doped iron-based superconductors: Evidence for enhanced spin fluctuations by diagonal electron hopping, Phys. Rev. Lett. 113(2), 027002 (2014)
CrossRef ADS Google scholar
[54]
D. Guterding, H. O. Jeschke, P. J. Hirschfeld, and R. Valenti, Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe, Phys. Rev. B 91, 041112(R) (2015)
[55]
F. Ronning, N. Kurita, E. D. Bauer, B. L. Scott, T. Park, T. Klimczuk, R. Movshovich, and J. D. Thompson, The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.: Condens. Matter 20(34), 342203 (2008)
CrossRef ADS Google scholar
[56]
A. S. Sefat, D. J. Singh, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point, Phys. Rev. B 79(2), 024512 (2009)
CrossRef ADS Google scholar
[57]
Y. Singh, A. Ellern, and D. C. Johnston, Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn2As2, Phys. Rev. B 79(9), 094519 (2009)
CrossRef ADS Google scholar
[58]
D. Gu, X. Dai, C. Le, L. Sun, Q. Wu, B. Saparov, J. Guo, P. Gao, S. Zhang, Y. Zhou, C. Zhang, S. Jin, L. Xiong, R. Li, Y. Li, X. Li, J. Liu, A. S. Sefat, J. Hu, and Z. Zhao, Robust antiferromagnetism preventing superconductivity in pressurized (Ba0.61K0.39)Mn2Bi2, Sci. Rep. 4, 7342 (2014)
CrossRef ADS Google scholar
[59]
R. Yang, C. Le, L. Zhang, B. Xu, W. Zhang, K. Nadeem, H. Xiao, J. Hu, and X. Qiu, Formation of As-As bond and its effect on absence of superconductivity in collapsed tetragonal phase of Ca0.86Pr0.14Fe2As2: An optical spectroscopy study, Phys. Rev. B 91(22), 224507 (2015)
CrossRef ADS Google scholar
[60]
H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. J. Scalapino, and H. Aoki, Three-orbital study on the orbital distillation effect in the high Tc cuprates, Phys. Proc. 45, 13 (2013)
CrossRef ADS Google scholar
[61]
I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx, Phys. Rev. Lett. 101(5), 057003 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(423 KB)

Accesses

Citations

Detail

Sections
Recommended

/