Stochastic description of quantum Brownian dynamics

Yun-An Yan, Jiushu Shao

PDF(2876 KB)
PDF(2876 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110309-110309. DOI: 10.1007/s11467-016-0570-9
Review article
Review article

Stochastic description of quantum Brownian dynamics

Author information +
History +

Abstract

Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (localization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

Keywords

stochastic description / quantum dissipation / spin-boson model / hierarchical approach

Cite this article

Download citation ▾
Yun-An Yan, Jiushu Shao. Stochastic description of quantum Brownian dynamics. Front. Phys., 2016, 11(4): 110309‒110309 https://doi.org/10.1007/s11467-016-0570-9

References

[1]
R. E. Bellman, Dynamic Programming, Princeton: Princeton University Press, 1957
[2]
H. J. Berendsen, Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics, Cambridge: Cambridge University Press, 2007
CrossRef ADS Google scholar
[3]
A. O. Caldeira, An Introduction to Macroscopic Quantum Phenomena and Quantum Dissipation, Cambridge: Cambridge University Press, 2014
CrossRef ADS Google scholar
[4]
S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15(1), 1 (1943)
CrossRef ADS Google scholar
[5]
S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics, Orlando: Academic Press, 2012
[6]
B. J. Berne, G. Cicootti, and D. F. Coker (<Eds/>.), Classical and Quantum Dynamics in Condensed Phase Simulations, Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed-Phase Systems, Singapore: World Scientific, 1998
CrossRef ADS Google scholar
[7]
W. Ji, H. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
CrossRef ADS Google scholar
[8]
A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 322(8), 549 (1905)
CrossRef ADS Google scholar
[9]
M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys. 326(14), 756 (1906)
CrossRef ADS Google scholar
[10]
M. Scott, Applied Stochastic Processes in Science and Engineering, Waterloo: University of Waterloo, 2013
[11]
C. Gardiner, Handbook of Stochastic Methods, 3rd Ed., Berlin: Springer, 2004
CrossRef ADS Google scholar
[12]
N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd Ed., Amsterdam: Elsevier, 2007
[13]
J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32(1), 97 (1928)
CrossRef ADS Google scholar
[14]
H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32(1), 110 (1928)
CrossRef ADS Google scholar
[15]
P. Langevin, On the theory of Brownian motion, C. R. Acad. Sci. (Paris) 146, 530 (1908)
[16]
D. S. Lemons and A. Gythiel, Paul Langevin’s 1908 paper “On the theory of Brownian motion” [“Sur la théorie du mouvement brownien”, C. R. Acad. Sci. (Paris) 146, 530–533 (1908)], Am. J. Phys. 65(11), 1079 (1997)
CrossRef ADS Google scholar
[17]
A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, Ann. Phys. 348(5), 810 (1914)
CrossRef ADS Google scholar
[18]
M. Planck, Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie, Sitz. König. Preuß. Akad. Wiss. 1, 324 (1917)
[19]
A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Mathematische Annalen, 104(1), 415 (1931)
CrossRef ADS Google scholar
[20]
H. Risken, Fokker-Planck Equation, Springer Series in Synergetics, Berlin: Springer, 1984
CrossRef ADS Google scholar
[21]
G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36(5), 823 (1930)
CrossRef ADS Google scholar
[22]
H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7(4), 284 (1940)
CrossRef ADS Google scholar
[23]
P. Hänggi, P. Talkner, and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62(2), 251 (1990)
CrossRef ADS Google scholar
[24]
R. Kubo, A stochastic theory of line shape, Adv. Chem. Phys. 15, 101 (1969)
CrossRef ADS Google scholar
[25]
H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83(1), 34 (1951)
CrossRef ADS Google scholar
[26]
R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29(1), 255 (1966)
CrossRef ADS Google scholar
[27]
S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys. 20(6), 948 (1958)
CrossRef ADS Google scholar
[28]
R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33(5), 1338 (1960)
CrossRef ADS Google scholar
[29]
G. W. Ford, J. T. Lewis, and R. F. O’Connell, Quantum Langevin equation, Phys. Rev. A 37(11), 4419 (1988)
CrossRef ADS Google scholar
[30]
M. C. Wang and G. E. Uhlenbeck, On the theory of the Brownian motion (II), Rev. Mod. Phys. 17(2-3), 323 (1945)
CrossRef ADS Google scholar
[31]
H.P. Breuer and F. Petruccione, Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
[32]
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59(1), 1 (1987)
CrossRef ADS Google scholar
[33]
P. Hänggi and G. Ingold, Fundamental aspects of quantum Brownian motion, Chaos 15, 026105 (2005)
CrossRef ADS Google scholar
[34]
U. Weiss, Quantum Dissipative Systems, Volume 13 of Series in Modern Condensed Matter Physics, 3rd Ed., Singapore: World Scientific, 2008
[35]
A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 149(2), 374 (1983)
CrossRef ADS Google scholar
[36]
R. Feynman and F. L. Jr. Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
CrossRef ADS Google scholar
[37]
J. Cao, L. W. Ungar, and G. A. Voth, A novel method for simulating quantum dissipative systems, J. Chem. Phys. 104(11), 4189 (1996)
CrossRef ADS Google scholar
[38]
J. T. Stockburger and C. H. Mak, Dynamical simulation of current fluctuations in a dissipative two-state system, Phys. Rev. Lett. 80(12), 2657 (1998)
CrossRef ADS Google scholar
[39]
J. T. Stockburger and H. Grabert, Exact c-number representation of non-Markovian quantum dissipation, Phys. Rev. Lett. 88(17), 170407 (2002)
CrossRef ADS Google scholar
[40]
W. Koch, F. Großmann, J. T. Stockburger, and J. Ankerhold, Non-Markovian dissipative semiclassical dynamics, Phys. Rev. Lett. 100(23), 230402 (2008)
CrossRef ADS Google scholar
[41]
L. Diósi and W. T. Strunz, The non-Markovian stochastic Schrö dinger equation for open systems, Phys. Lett. A 235(6), 569 (1997)
CrossRef ADS Google scholar
[42]
L. Diósi, N. Gisin, and W. T. Strunz, Non-Markovian quantum state diffusion, Phys. Rev. A 58(3), 1699 (1998)
CrossRef ADS Google scholar
[43]
W. T. Strunz, L. Diósi, and N. Gisin, Open system dynamics with non-Markovian quantum trajectories, Phys. Rev. Lett. 82(9), 1801 (1999)
CrossRef ADS Google scholar
[44]
W. T. Strunz, L. Diósi, N. Gisin, and T. Yu, Quantum trajectories for Brownian motion, Phys. Rev. Lett. 83(24), 4909 (1999)
CrossRef ADS Google scholar
[45]
T. Yu, Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath, Phys. Rev. A 69(6), 062107 (2004)
CrossRef ADS Google scholar
[46]
X. Zhao, J. Jing, B. Corn, and T. Yu, Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach, Phys. Rev. A 84(3), 032101 (2011)
CrossRef ADS Google scholar
[47]
H. Breuer, Exact quantum jump approach to open systems in bosonic and spin baths, Phys. Rev. A 69(2), 022115 (2004)
CrossRef ADS Google scholar
[48]
E. Calzetta, A. Roura, and E. Verdaguer, Stochastic description for open quantum systems, Physica A 319, 188 (2003)
CrossRef ADS Google scholar
[49]
J. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
CrossRef ADS Google scholar
[50]
J. T. Stockburger and H. Grabert, Non-Markovian quantum state diffusion, Chem. Phys. 268(1-3), 249 (2001)
CrossRef ADS Google scholar
[51]
M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Commun. Math. Phys. 51(2), 183 (1976)
CrossRef ADS Google scholar
[52]
D. Gatarek and N. Gisin, Continuous quantum jumps and infinite-dimensional stochastic equations, J. Math. Phys. 32(8), 2152 (1991)
CrossRef ADS Google scholar
[53]
A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)
CrossRef ADS Google scholar
[54]
W. H. Louisell, Quantum Statistical Properties of Radiation, New York: Wiley, 1973
[55]
W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7(4), 649 (1954)
CrossRef ADS Google scholar
[56]
D. Finkelstein, On relations between commutators, Commun. Pure Appl. Math. 8(2), 245 (1955)
CrossRef ADS Google scholar
[57]
E. H. Wichmann, Note on the algebraic aspect of the integration of a system of ordinary linear differential equations, J. Math. Phys. 2(6), 876 (1961)
CrossRef ADS Google scholar
[58]
G. H. Weiss and A. A. Maradudin, The Baker-Hausdorff formula and a problem in crystal physics, J. Math. Phys. 3(4), 771 (1962)
CrossRef ADS Google scholar
[59]
A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6(4), 387 (2006)
CrossRef ADS Google scholar
[60]
Y. A. Yan and Y. Zhou, Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics, Phys. Rev. A 92(2), 022121 (2015)
CrossRef ADS Google scholar
[61]
J. Shao, Rigorous representation and exact simulation of real Gaussian stationary processes, Chem. Phys. 375(2-3), 378 (2010)
CrossRef ADS Google scholar
[62]
R. B. Davies and D. S. Harte, Tests for Hurst effect, Biometrika 74(1), 95 (1987)
CrossRef ADS Google scholar
[63]
A. T. A. Wood and G. Chan, Simulation of stationary Gaussian processes in [0,1]d, J. Comput. Graph. Stat. 3(4), 409 (1994)
CrossRef ADS Google scholar
[64]
G. Chan and A. Wood, Algorithm AS312: An algorithm for simulating stationary Gaussian random fields, Appl. Stat. 46(1), 171 (1997)
CrossRef ADS Google scholar
[65]
G. Chan and A. T. A. Wood, Simulation of stationary Gaussian vector fields, Stat. Comput. 9(4), 265 (1999)
CrossRef ADS Google scholar
[66]
C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, On the measurement of a weak classical force coupled to a quantum-mechanical oscillator (I): Issues of principle, Rev. Mod. Phys. 52(2), 341 (1980)
CrossRef ADS Google scholar
[67]
D. Mozyrsky and V. Privman, Measurement of a quantum system coupled to independent heat-bath and pointer modes, Mod. Phys. Lett. B 14(09), 303 (2000)
CrossRef ADS Google scholar
[68]
J. Shao, M. L. Ge, and H. Cheng, Decoherence of quantum-nondemolition systems, Phys. Rev. E 53(1), 1243 (1996)
Pubmed
[69]
P. Schramm and H. Grabert, Effect of dissipation on squeezed quantum fluctuations, Phys. Rev. A 34(5), 4515 (1986)
Pubmed
[70]
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2nd Ed., Berlin: Springer-Verlag, 1995
[71]
V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd Ed., Weinheim: Wiley-VCH, 2010
[72]
M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[73]
R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft27, Berlin-Göttingen-Heidelberg: Springer-Verlag, 1960
CrossRef ADS Google scholar
[74]
H. P. Breuer, E. M. Laine, and J. Piilo, Measure for the degree of non-markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103(21), 210401 (2009)
Pubmed
[75]
Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-Markovianity: Characterization, quantification and detection, Rep. Prog. Phys. 77(9), 094001 (2014)
Pubmed
[76]
A. Brissaud and U. Frisch, Solving linear stochastic differential equations, J. Math. Phys. 15(5), 524 (1974)
CrossRef ADS Google scholar
[77]
V. I. Klyatskin, Dynamics of Stochastic Systems, Amsterdam: Elsevier Science, 2005
[78]
M. Ban, S. Kitajima, and F. Shibata, Reduced dynamics and the master equation of open quantum systems, Phys. Lett. A 374(23), 2324 (2010)
CrossRef ADS Google scholar
[79]
E. Novikov, Functionals and the Random-force Method in Turbulence Theory, Sov. Phys. JETP 20(5), 1290 (1965) http://www.jetp.ac.ru/cgi-bin/e/index/e/20/5/p1290?a=list
[80]
J. Cao, A phase-space study of Bloch–Redfield theory, J. Chem. Phys. 107(8), 3204 (1997)
CrossRef ADS Google scholar
[81]
C. Fleming, A. Roura, and B. Hu, Exact analytical solutions to the master equation of quantum Brownian motion for a general environment, Ann. Phys. 326(5), 1207 (2011)
CrossRef ADS Google scholar
[82]
H. Dekker, Quantization of the linearly damped harmonic oscillator, Phys. Rev. A 16(5), 2126 (1977)
CrossRef ADS Google scholar
[83]
H. Dekker, Classical and quantum mechanics of the damped harmonic oscillator, Phys. Rep. 80(1), 1 (1981)
CrossRef ADS Google scholar
[84]
F. Haake and R. Reibold, Strong damping and low-temperature anomalies for the harmonic oscillator, Phys. Rev. A 32(4), 2462 (1985)
Pubmed
[85]
H. Grabert, P. Schramm, and G. L. Ingold, Quantum Brownian motion: The functional integral approach, Phys. Rep. 168(3), 115 (1988)
CrossRef ADS Google scholar
[86]
W. G. Unruh and W. H. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. D 40(4), 1071 (1989)
Pubmed
[87]
V. Ambegaokar, Dissipation and decoherence in a quantum oscillator, J. Stat. Phys. 125(5-6), 1183 (2006)
CrossRef ADS Google scholar
[88]
B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise, Phys. Rev. D 45(8), 2843 (1992)
Pubmed
[89]
B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment (II): Nonlinear coupling and perturbative approach, Phys. Rev. D 47(4), 1576 (1993)
Pubmed
[90]
J. J. Halliwell and T. Yu, Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion, Phys. Rev. D 53(4), 2012 (1996)
Pubmed
[91]
R. Karrlein and H. Grabert, Exact time evolution and master equations for the damped harmonic oscillator, Phys. Rev. E 55(1), 153 (1997)
CrossRef ADS Google scholar
[92]
G. W. Ford and R. F. O'Connell, Exact solution of the Hu–Paz–Zhang master equation, Phys. Rev. D 64(10), 105020 (2001)
CrossRef ADS Google scholar
[93]
E. Calzetta, A. Roura, and E. Verdaguer, Master equation for quantum Brownian motion derived by stochastic methods, Int. J. Theor. Phys. 40(12), 2317 (2001)
CrossRef ADS Google scholar
[94]
W. T. Strunz and T. Yu, Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion, Phys. Rev. A 69(5), 052115 (2004)
CrossRef ADS Google scholar
[95]
C. H. Chou, T. Yu, and B. L. Hu, Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment, Phys. Rev. E 77(1 Pt 1), 011112 (2008)
Pubmed
[96]
C. Chou, B. Hu, and T. Yu, Quantum Brownian motion of a macroscopic object in a general environment, Physica A 387(2-3), 432 (2008)
CrossRef ADS Google scholar
[97]
R. Xu, B. Tian, J. Xu, and Y. Yan, Exact dynamics of driven Brownian oscillators, J. Chem. Phys. 130, 074107 (2009) http://dx.doi.org/10.1063/1.3078024
CrossRef ADS Google scholar
[98]
P. S. Riseborough, P. Hanggi, and U. Weiss, Exact results for a damped quantum-mechanical harmonic oscillator, Phys. Rev. A 31(1), 471 (1985)
Pubmed
[99]
S. Kohler, T. Dittrich, and P. Hänggi, Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator, Phys. Rev. E 55(1), 300 (1997)
CrossRef ADS Google scholar
[100]
C. Zerbe and P. Hänggi, Brownian parametric quantum oscillator with dissipation, Phys. Rev. E 52(2), 1533 (1995)
Pubmed
[101]
H. Li, J. Shao, and S. Wang, Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator, Phys. Rev. E 84(5 Pt 1), 051112 (2011)
Pubmed
[102]
J. T. Stockburger, Simulating spin-boson dynamics with stochastic Liouville–von Neumann equations, Chem. Phys. 296(2-3), 159 (2004)
CrossRef ADS Google scholar
[103]
C. Meier and D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser fields, J. Chem. Phys. 111(8), 3365 (1999)
CrossRef ADS Google scholar
[104]
C. Kreisbeck and T. Kramer, Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes, J. Phys. Chem. Lett. 3(19), 2828 (2012)
CrossRef ADS Google scholar
[105]
V. Shapiro and V. Loginov, “Formulae of differentiation” and their use for solving stochastic equations, Physica A 91(3-4), 563 (1978)
CrossRef ADS Google scholar
[106]
Y. Tanimura and R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath, J. Phys. Soc. Jpn. 58(1), 101 (1989)
CrossRef ADS Google scholar
[107]
Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)
Pubmed
[108]
Y. Zhou, Y. Yan, and J. Shao, Stochastic simulation of quantum dissipative dynamics, Europhys. Lett. 72(3), 334 (2005)
CrossRef ADS Google scholar
[109]
Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, Extended hierarchy equation of motion for the spin-boson model, J. Chem. Phys. 143, 224112 (2015) http://dx.doi.org/10.1063/1.4936924
CrossRef ADS Google scholar
[110]
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
Pubmed
[111]
Q. Shi, L. Chen, G. Nan, R. X. Xu, and Y. Yan, Efficient hierarchical Liouville space propagator to quantum dissipative dynamics, J. Chem. Phys. 130(8), 084105 (2009)
Pubmed
[112]
J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)
Pubmed
[113]
K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)
Pubmed
[114]
D. Alonso and I. de Vega, Hierarchy of equations of multiple-time correlation functions, Phys. Rev. A 75(5), 052108 (2007)
CrossRef ADS Google scholar
[115]
M. Sarovar and M. D. Grace, Reduced equations of motion for quantum systems driven by diffusive Markov processes, Phys. Rev. Lett. 109(13), 130401 (2012)
Pubmed
[116]
I. Vega, On the structure of the master equation for a two-level system coupled to a thermal bath, J. Phys. A Math. Theor. 48(14), 145202 (2015)
CrossRef ADS Google scholar
[117]
Z. Zhou, M. Chen, T. Yu, and J. Q. You, Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model, Phys. Rev. A 93(2), 022105 (2016)
CrossRef ADS Google scholar
[118]
A. Ishizaki and G. R. Fleming, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature, Proc. Natl. Acad. Sci. USA 106(41), 17255 (2009)
Pubmed
[119]
Y. A. Yan and O. Kühn, Laser control of dissipative two-exciton dynamics in molecular aggregates, New J. Phys. 14(10), 105004 (2012)
CrossRef ADS Google scholar
[120]
Y. A. Yan and S. Cai, Exciton Seebeck effect in molecular systems, J. Chem. Phys. 141(5), 054105 (2014)
Pubmed
[121]
Y. Yan, Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems, J. Chem. Phys. 144, 024305 (2016)  http://dx.doi.org/10.1063/1.4939523
CrossRef ADS Google scholar
[122]
L. Chen, R. Zheng, Q. Shi, and Y. Yan, Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers, J. Chem. Phys. 132(2), 024505 (2010)
Pubmed
[123]
X. Zheng, Y. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)
Pubmed
[124]
S. Chakravarty and A. J. Leggett, Dynamics of the two-state system with Ohmic dissipation, Phys. Rev. Lett. 52(1), 5 (1984)
CrossRef ADS Google scholar
[125]
Y. Zhouand J.Shao, Solving the spin-boson model of strong dissipation with flexible random-deterministic scheme, J. Chem. Phys. 128(3), 034106 (2008)
Pubmed
[126]
F. Lesage and H. Saleur, Boundary interaction changing operators and dynamical correlations in quantum impurity problems, Phys. Rev. Lett. 80(20), 4370 (1998)
CrossRef ADS Google scholar
[127]
G. M. Whitesides, Reinventing chemistry, Angew. Chem. Int. Ed. 54(11), 3196 (2015)
CrossRef ADS Google scholar
[128]
H. Primas, Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry, Lecture Notes in Chemistry, Berlin: Springer, 1983
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2876 KB)

Accesses

Citations

Detail

Sections
Recommended

/