Photon condensation: A new paradigm for Bose–Einstein condensation

Renju Rajan , P. Ramesh Babu , K. Senthilnathan

Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 110502

PDF (621KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 110502 DOI: 10.1007/s11467-016-0568-3
REVIEW ARTICLE

Photon condensation: A new paradigm for Bose–Einstein condensation

Author information +
History +
PDF (621KB)

Abstract

Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

Keywords

Bose–Einstein condensation / photon condensation / magneto-optical trap / Gross–Pitaevskii equation / Planck’s radiation law

Cite this article

Download citation ▾
Renju Rajan, P. Ramesh Babu, K. Senthilnathan. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys., 2016, 11(5): 110502 DOI:10.1007/s11467-016-0568-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Philippines: Addison-Wesley, 1975

[2]

S. N. Bose, Planck's law and the light quantum hypothesis, Z. Phys. 26(1), 178 (1924)

[3]

A. Einstein, Quantum theory of the monoatomic ideal gas, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)

[4]

F. London, The ʌ-phenomenon of liquid helium and the Bose-Einstein degeneracy, Nature 141(3571), 643 (1938)

[5]

L. D. Landau, Theory of the superfluidity of Helium II, Phys. Rev. 60(4), 356 (1941)

[6]

H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping, New York: Springer-Verlag, 1999

[7]

V. S. Letokhov, Laser Control of Atoms and Molecules, New York: Oxford University Press, 2007

[8]

C. J. Foot, Atomic Physics, New York: Oxford University Press, 2005

[9]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)

[10]

K. B. Davis, M. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms., Phys. Rev. Lett. 75(22), 3969 (1995)

[11]

S. Blundell, Magnetism in Condensed Matter, New York: Oxford University Press, 2001

[12]

Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)

[13]

M. Fox, Quantum Optics: An Introduction, New York: Oxford University Press, 2006

[14]

W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)

[15]

D. J. Wineland and W. M. Itano, Laser cooling of atoms, Phys. Rev. A 20(4), 1521 (1979)

[16]

A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, First observation of magnetically trapped neutral atoms, Phys. Rev. Lett. 54(24), 2596 (1985)

[17]

C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, Phase-space density in the magneto-optical trap, Phys. Rev., A 52(2), 1423 (1995)

[18]

C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in a crossed dipole trap, Phys. Rev. Lett. 74(18), 3577 (1995)

[19]

P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses, J. Opt. Soc. Am. B 6(11), 2084 (1989)

[20]

W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly confining magnetic trap for evaporative cooling of neutral atoms, Phys. Rev. Lett. 74(17), 3352 (1995)

[21]

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys. 71(2), S253 (1999)

[22]

H. Wu, E. Arimondo, and C. J. Foot, Dynamics of evaporative cooling for Bose-Einstein condensation, Phys. Rev. A 56(1), 560 (1997)

[23]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)

[24]

V. M. Pérez-García, N. G. Berloff, P. G. Kevrekidis, V. V. Konotop, and B. A. Malomed, Nonlinear phenomena in degenerate quantum gases, Physica D 238(15), 1289 (2009)

[25]

I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)

[26]

S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)

[27]

J. F. Annett, Superconductivity, Superfluids and Condensates, New York: Oxford University Press, 2004

[28]

R. Camassa, J. M. Hyman, and B. P. Luce, Nonlinear waves and solitons in physical systems, Physica D 123(1-4), 1 (1998)

[29]

S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates, Front. Phys. 8(3), 302 (2013)

[30]

P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Berlin: Springer-Verlag, 2008

[31]

E. Hecht, Optics, 4th Ed., San Francisco: Addison-Wesley, 2002

[32]

E. Yablonovitch, Light emission in photonic crystal micro-cavities, in: Confined Electrons and Photons: New Physics and Applications, edited by E. Burstein and C. Weisbuch, New York: Springer Science & Business Media, 1995, pp. 635–646

[33]

J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545 (2010)

[34]

J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz, Bose-Einstein condensation of paraxial light, Appl. Phys. B 105(1), 17 (2011)

[35]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., New York: Springer, 2006

[36]

B. I. Stepanov and L. P. Kazachenko, Universal relationship between absorption and emission spectra taking the solvent effect into account, J. Appl. Spectrosc. 14(5), 596 (1971)

[37]

J. Klaers, F. Vewinger, and M. Weitz, Thermalization of a two-dimensional photonic gas in a white wall photon box, Nat. Phys. 6(7), 512 (2010)

[38]

P. W. Milonni and J. H. Eberly, Laser Physics, New Jersey: John Wiley and Sons, 2010

[39]

W. T. Silfvast, Laser Fundamentals, 2nd Ed., Cambridge: Cambridge University Press, 2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (621KB)

1443

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/