Photon condensation: A new paradigm for Bose–Einstein condensation

Renju Rajan, P. Ramesh Babu, K. Senthilnathan

PDF(621 KB)
PDF(621 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 110502. DOI: 10.1007/s11467-016-0568-3
REVIEW ARTICLE
REVIEW ARTICLE

Photon condensation: A new paradigm for Bose–Einstein condensation

Author information +
History +

Abstract

Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

Keywords

Bose–Einstein condensation / photon condensation / magneto-optical trap / Gross–Pitaevskii equation / Planck’s radiation law

Cite this article

Download citation ▾
Renju Rajan, P. Ramesh Babu, K. Senthilnathan. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys., 2016, 11(5): 110502 https://doi.org/10.1007/s11467-016-0568-3

References

[1]
F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Philippines: Addison-Wesley, 1975
[2]
S. N. Bose, Planck's law and the light quantum hypothesis, Z. Phys. 26(1), 178 (1924)
CrossRef ADS Google scholar
[3]
A. Einstein, Quantum theory of the monoatomic ideal gas, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)
[4]
F. London, The ʌ-phenomenon of liquid helium and the Bose-Einstein degeneracy, Nature 141(3571), 643 (1938)
CrossRef ADS Google scholar
[5]
L. D. Landau, Theory of the superfluidity of Helium II, Phys. Rev. 60(4), 356 (1941)
CrossRef ADS Google scholar
[6]
H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping, New York: Springer-Verlag, 1999
CrossRef ADS Google scholar
[7]
V. S. Letokhov, Laser Control of Atoms and Molecules, New York: Oxford University Press, 2007
[8]
C. J. Foot, Atomic Physics, New York: Oxford University Press, 2005
[9]
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
CrossRef ADS Pubmed Google scholar
[10]
K. B. Davis, M. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms., Phys. Rev. Lett. 75(22), 3969 (1995)
CrossRef ADS Pubmed Google scholar
[11]
S. Blundell, Magnetism in Condensed Matter, New York: Oxford University Press, 2001
[12]
Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
CrossRef ADS Google scholar
[13]
M. Fox, Quantum Optics: An Introduction, New York: Oxford University Press, 2006
[14]
W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
CrossRef ADS Google scholar
[15]
D. J. Wineland and W. M. Itano, Laser cooling of atoms, Phys. Rev. A 20(4), 1521 (1979)
CrossRef ADS Google scholar
[16]
A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, First observation of magnetically trapped neutral atoms, Phys. Rev. Lett. 54(24), 2596 (1985)
CrossRef ADS Pubmed Google scholar
[17]
C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, Phase-space density in the magneto-optical trap, Phys. Rev., A 52(2), 1423 (1995)
CrossRef ADS Pubmed Google scholar
[18]
C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in a crossed dipole trap, Phys. Rev. Lett. 74(18), 3577 (1995)
CrossRef ADS Pubmed Google scholar
[19]
P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses, J. Opt. Soc. Am. B 6(11), 2084 (1989)
CrossRef ADS Google scholar
[20]
W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly confining magnetic trap for evaporative cooling of neutral atoms, Phys. Rev. Lett. 74(17), 3352 (1995)
CrossRef ADS Pubmed Google scholar
[21]
C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys. 71(2), S253 (1999)
CrossRef ADS Google scholar
[22]
H. Wu, E. Arimondo, and C. J. Foot, Dynamics of evaporative cooling for Bose-Einstein condensation, Phys. Rev. A 56(1), 560 (1997)
CrossRef ADS Google scholar
[23]
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
CrossRef ADS Google scholar
[24]
V. M. Pérez-García, N. G. Berloff, P. G. Kevrekidis, V. V. Konotop, and B. A. Malomed, Nonlinear phenomena in degenerate quantum gases, Physica D 238(15), 1289 (2009)
CrossRef ADS Google scholar
[25]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef ADS Google scholar
[26]
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
CrossRef ADS Google scholar
[27]
J. F. Annett, Superconductivity, Superfluids and Condensates, New York: Oxford University Press, 2004
[28]
R. Camassa, J. M. Hyman, and B. P. Luce, Nonlinear waves and solitons in physical systems, Physica D 123(1-4), 1 (1998)
CrossRef ADS Google scholar
[29]
S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates, Front. Phys. 8(3), 302 (2013)
CrossRef ADS Google scholar
[30]
P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Berlin: Springer-Verlag, 2008
CrossRef ADS Google scholar
[31]
E. Hecht, Optics, 4th Ed., San Francisco: Addison-Wesley, 2002
[32]
E. Yablonovitch, Light emission in photonic crystal micro-cavities, in: Confined Electrons and Photons: New Physics and Applications, edited by E. Burstein and C. Weisbuch, New York: Springer Science & Business Media, 1995, pp. 635–646
CrossRef ADS Google scholar
[33]
J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545 (2010)
CrossRef ADS Pubmed Google scholar
[34]
J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz, Bose-Einstein condensation of paraxial light, Appl. Phys. B 105(1), 17 (2011)
CrossRef ADS Google scholar
[35]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., New York: Springer, 2006
CrossRef ADS Google scholar
[36]
B. I. Stepanov and L. P. Kazachenko, Universal relationship between absorption and emission spectra taking the solvent effect into account, J. Appl. Spectrosc. 14(5), 596 (1971)
CrossRef ADS Google scholar
[37]
J. Klaers, F. Vewinger, and M. Weitz, Thermalization of a two-dimensional photonic gas in a white wall photon box, Nat. Phys. 6(7), 512 (2010)
CrossRef ADS Google scholar
[38]
P. W. Milonni and J. H. Eberly, Laser Physics, New Jersey: John Wiley and Sons, 2010
[39]
W. T. Silfvast, Laser Fundamentals, 2nd Ed., Cambridge: Cambridge University Press, 2004
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(621 KB)

Accesses

Citations

Detail

Sections
Recommended

/