
Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays
Li-Hua Qian, Li-Zhi Yi, Gui-Sheng Wang, Chao Zhang, Song-Liu Yuan
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 115204.
Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays
Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.
surface plasmon / tunable / plasmonic gap / quantum plasmon / surface-enhanced Raman scattering / self-assembly / nanoparticle array
[1] |
C. B. Azzoni, D. D. I. Martino, V. Marchesi, B. Messiga, and M. P. Riccardi, Colour attributes of medieval window panes: Electron paramagnetic resonance and probe microanalyses on stained glass windows from Pavia-Carthusian monastery, Archaeometry 47(2), 381 (2005)
CrossRef
ADS
Google scholar
|
[2] |
S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)
CrossRef
ADS
Google scholar
|
[3] |
G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330(3), 377 (1908)
CrossRef
ADS
Google scholar
|
[4] |
N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111(6), 3913 (2011)
CrossRef
ADS
Google scholar
|
[5] |
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer, 1988
|
[6] |
L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19), 5636 (1998)
CrossRef
ADS
Google scholar
|
[7] |
B. Auguié and W. L. Barnes, Collective resonances in gold nanoparticle arrays, Phys. Rev. Lett. 101(14), 143902 (2008)
CrossRef
ADS
Google scholar
|
[8] |
T. J. Yim, Y. Wang, and X. Zhang, Synthesis of a gold nanoparticle dimer plasmonic resonator through two-phase-mediated functionalization, Nanotechnology 19(43), 435605 (2008)
CrossRef
ADS
Google scholar
|
[9] |
D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)
CrossRef
ADS
Google scholar
|
[10] |
S. Shen, L. Meng, Y. Zhang, J. Han, Z. Ma, S. Hu, Y. He, J. Li, B. Ren, T.M. Shih, Z. Wang, Z. Yang, and Z. Tian, Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities, Nano Lett. 15(10), 6716 (2015)
CrossRef
ADS
Google scholar
|
[11] |
Z. Q. Tian and B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 55(1), 197 (2004)
CrossRef
ADS
Google scholar
|
[12] |
E. C. Le Ru and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)
CrossRef
ADS
Google scholar
|
[13] |
L. Li, T. Li, S. M. Wang, and S. N. Zhu, Collimated plasmon beam: Nondiffracting versus linearly focused, Phys. Rev. Lett. 110(4), 046807 (2013)
CrossRef
ADS
Google scholar
|
[14] |
Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film, Science 337(6093), 450 (2012)
CrossRef
ADS
Google scholar
|
[15] |
A. V. Krasavin and A. V. Zayats, Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator, Phys. Rev. Lett. 109(5), 053901 (2012)
CrossRef
ADS
Google scholar
|
[16] |
M. L. Brongersma and V. M. Shalaev, The case for plasmonics, Science 328(5977), 440 (2010)
CrossRef
ADS
Google scholar
|
[17] |
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
|
[18] |
W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, A plasmonic Fano switch, Nano Lett. 12(9), 4977 (2012)
CrossRef
ADS
Google scholar
|
[19] |
A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)
CrossRef
ADS
Google scholar
|
[20] |
H. Wang, C. S. Levin, and N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates, J. Am. Chem. Soc. 127(43), 14992 (2005)
CrossRef
ADS
Google scholar
|
[21] |
Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H. S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates, Nano Lett. 15(9), 5976 (2015)
CrossRef
ADS
Google scholar
|
[22] |
J. Y. Park, L. R. Baker, and G. A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions, Chem. Rev. 115(8), 2781 (2015)
CrossRef
ADS
Google scholar
|
[23] |
R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations, Faraday Discuss. 178, 151 (2015)
CrossRef
ADS
Google scholar
|
[24] |
C.Y. Li, J.C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.L. Yang, J.F. Li, T. Wandlowski, and Z.Q. Tian, In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy, J. Am. Chem. Soc. 137(24), 7648 (2015)
CrossRef
ADS
Google scholar
|
[25] |
L. M. Tong, H. X. Xu, and M. Käll, Nanogaps for SERS applications, MRS Bull. 39(2), 193 (2014)
CrossRef
ADS
Google scholar
|
[26] |
K. D. Alexander, S. P. Zhang, A. R. Hight Walker, H. X. Xu, and R. Lopez, Relationship between length and surface-enhanced raman spectroscopy signal strength in metal nanoparticle chains: Ideal models versus nanofabrication, J. Nanotechnol. 2012, 840245 (2012)
CrossRef
ADS
Google scholar
|
[27] |
K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
CrossRef
ADS
Google scholar
|
[28] |
F. Huang and J. J. Baumberg, Actively tuned plasmons on elastomerically driven Au nanoparticle dimers, Nano Lett. 10(5), 1787 (2010)
CrossRef
ADS
Google scholar
|
[29] |
P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler,J. R. Krenn, and U. Hohenester, Ultrafast strong-field photoemission from plasmonic nanoparticles, Nano Lett. 13(2), 674 (2013)
CrossRef
ADS
Google scholar
|
[30] |
R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model, Nat. Commun. 3, 825 (2012)
CrossRef
ADS
Google scholar
|
[31] |
J. H. Yoon, Y. Zhou, M. G. Blaber, G. C. Schatz, and S. Yoon, Surface plasmon coupling of compositionally heterogeneous core-satellite nanoassemblies, J. Phys. Chem. Lett. 4(9), 1371 (2013)
CrossRef
ADS
Google scholar
|
[32] |
J. H. Yoon, J. Lim, and S. Yoon, Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies, ACS Nano 6(8), 7199 (2012)
CrossRef
ADS
Google scholar
|
[33] |
S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Flexible plasmonics on unconventional and nonplanar substrates, Adv. Mater. 23(38), 4422 (2011)
CrossRef
ADS
Google scholar
|
[34] |
L. Lermusiaux, V. Maillard, and S. Bidault, Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers, ACS Nano 9(1), 978 (2015)
CrossRef
ADS
Google scholar
|
[35] |
B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, and K. J. M. Bishop, Self-assembly: From crystals to cells, Soft Matter 5(6), 1110 (2009)
CrossRef
ADS
Google scholar
|
[36] |
Z. M. Zhu, H. F. Meng, W. J. Liu, X. F. Liu, J. X. Gong, X. H. Qiu, L. Jiang, D. Wang, and Z. Y. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes, Angew. Chem. Int. Ed. 50(7), 1593 (2011)
CrossRef
ADS
Google scholar
|
[37] |
W. Cheng, M. J. Campolongo, J. J. Cha, S. J. Tan, C. C. Umbach, D. A. Muller, and D. Luo, Free-standing nanoparticle superlattice sheets controlled by DNA, Nat. Mater. 8(6), 519 (2009)
CrossRef
ADS
Google scholar
|
[38] |
M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, Self-assembled nanoparticle arrays for multiphase trace analyte detection, Nat. Mater. 12(2), 165 (2013)
CrossRef
ADS
Google scholar
|
[39] |
L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres, Nano Lett. 12(3), 1424 (2012)
CrossRef
ADS
Google scholar
|
[40] |
Z. Yang, S. Chen, P. Fang, B. Ren, H. H. Girault, and Z. Tian, LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface, Phys. Chem. Chem. Phys. 15(15), 5374 (2013)
CrossRef
ADS
Google scholar
|
[41] |
H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix, J. Am. Chem. Soc. 136(14), 5332 (2014)
CrossRef
ADS
Google scholar
|
[42] |
J. Chen, B. Shen, G. Qin, X. Hu, L. Qian, Z. Wang, S. Li, Y. Ren, and L. Zuo, Fabrication of large-area, high-enhancement SERS substrates with tunable interparticle spacing and application in identifying microorganisms at the single cell level, J. Phys. Chem. C 116(5), 3320 (2012)
CrossRef
ADS
Google scholar
|
[43] |
Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface, ACS Nano 6(8), 6706 (2012)
CrossRef
ADS
Google scholar
|
[44] |
R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653), 827 (1997)
CrossRef
ADS
Google scholar
|
[45] |
A. S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12(5), 1303 (1996)
CrossRef
ADS
Google scholar
|
[46] |
M. H. Kim, S. H. Im, and O. O. Park, Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly, Adv. Funct. Mater. 15(8), 1329 (2005)
CrossRef
ADS
Google scholar
|
[47] |
S. W. Hong, M. Byun, and Z. Q. Lin, Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids, Angew. Chem. Int. Ed. 48(3), 512 (2009)
CrossRef
ADS
Google scholar
|
[48] |
L. H. Qian and R. Mookherjee, Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering, Nano Res. 4(11), 1117 (2011)
CrossRef
ADS
Google scholar
|
[49] |
L. H. Qian, S. J. Zhai, Y. T. Jiang, and B. Das, Nanoscale convection assisted self-assembly of nanoparticle monolayer, J. Mater. Chem. 22(11), 4932 (2012)
CrossRef
ADS
Google scholar
|
[50] |
C. Zhang, J. Li, S. Yang, W. Jiao, S. Xiao, M. Zou, S. Yuan, F. Xiao, S. Wang, and L. Qian, Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle, Nano Res. 7(6), 824 (2014)
CrossRef
ADS
Google scholar
|
[51] |
L. Z. Yi, W. H. Jiao, K. Wu, L. H. Qian, X. X. Yu, Q. Xia, K. M. Mao, S. L. Yuan, S. Wang, and Y. T. Jiang, Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection, Nano Res. 8(9), 2978 (2015)
CrossRef
ADS
Google scholar
|
[52] |
J. Zhang, Y. Li, X. Zhang, and B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater. 22(38), 4249 (2010)
CrossRef
ADS
Google scholar
|
[53] |
M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Template-induced structure transition in sub-10 nm self-assembling nanoparticles, Nano Lett. 14(5), 2642 (2014)
CrossRef
ADS
Google scholar
|
[54] |
C. Jin, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals, Nano Lett. 5(12), 2646 (2005)
CrossRef
ADS
Google scholar
|
[55] |
C. J. Jin, Z. Y. Li, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Optical properties of tetragonal photonic crystal synthesized via template-assisted self-assembly, J. Appl. Phys. 99(11), 116109 (2006)
CrossRef
ADS
Google scholar
|
[56] |
Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4(6), 1093 (2004)
CrossRef
ADS
Google scholar
|
[57] |
M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution, Nano Lett. 15(9), 6066 (2015)
CrossRef
ADS
Google scholar
|
[58] |
A. Pescaglini, A. O'Riordan, A. J. Quinn, and D. Iacopino, Controlled assembly of Au nanorods into 1D architectures by electric field assisted deposition, J. Mater. Chem. C 2(33), 6810 (2014)
CrossRef
ADS
Google scholar
|
[59] |
H. Cha, J. H. Yoon, and S. Yoon, Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range, ACS Nano 8(8), 8554 (2014)
CrossRef
ADS
Google scholar
|
[60] |
S. Malynych and G. Chumanov, Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, J. Am. Chem. Soc. 125(10), 2896 (2003)
CrossRef
ADS
Google scholar
|
[61] |
R. M. Cole, S. Mahajan, and J. J. Baumberg, Stretchable metal-elastomer nanovoids for tunable plasmons, Appl. Phys. Lett. 95(15), 154103 (2009)
CrossRef
ADS
Google scholar
|
[62] |
Y. Cui, J. Zhou, V. A. Tamma, and W. Park, Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure, ACS Nano 6(3), 2385 (2012)
CrossRef
ADS
Google scholar
|
[63] |
S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, Tunable surface plasmon resonance on an elastomeric substrate, Opt. Express 17(10), 8542 (2009)
CrossRef
ADS
Google scholar
|
[64] |
X. Han, Y. Liu, and Y. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains, Nano Lett. 14(5), 2466 (2014)
CrossRef
ADS
Google scholar
|
[65] |
K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
CrossRef
ADS
Google scholar
|
[66] |
W. Jiao, L. Yi, C. Zhang, K. Wu, J. Li, L. Qian, S. Wang, Y. Jiang, B. Das, and S. Yuan, Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing, Nanoscale 6(22), 13809 (2014)
CrossRef
ADS
Google scholar
|
[67] |
J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
CrossRef
ADS
Google scholar
|
[68] |
L. Z. Yi, W. H. Jiao, C. M. Zhu, K. Wu, C. Zhang, L. H. Qian, S. Wang, Y. T. Jiang, and S. L. Yuan, Nano Res. (2016) (in press)
|
[69] |
K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
CrossRef
ADS
Google scholar
|
[70] |
H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: Classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
CrossRef
ADS
Google scholar
|
[71] |
S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Quantum plasmon resonances controlled by molecular tunnel junctions, Science 343(6178), 1496 (2014)
CrossRef
ADS
Google scholar
|
[72] |
S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel,Haglund, and A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Opt. Express 21(22), 27503 (2013)
CrossRef
ADS
Google scholar
|
[73] |
L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 68 (2014)
CrossRef
ADS
Google scholar
|
[74] |
Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 24 (2014)
CrossRef
ADS
Google scholar
|
Part of a collection:
/
〈 |
|
〉 |