Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

Li-Hua Qian, Li-Zhi Yi, Gui-Sheng Wang, Chao Zhang, Song-Liu Yuan

Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 115204.

PDF(696 KB)
Front. Phys. All Journals
PDF(696 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 115204. DOI: 10.1007/s11467-016-0567-4
REVIEW ARTICLE

Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

Author information +
History +

Abstract

Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

Keywords

surface plasmon / tunable / plasmonic gap / quantum plasmon / surface-enhanced Raman scattering / self-assembly / nanoparticle array

Cite this article

Download citation ▾
Li-Hua Qian, Li-Zhi Yi, Gui-Sheng Wang, Chao Zhang, Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays. Front. Phys., 2016, 11(2): 115204 https://doi.org/10.1007/s11467-016-0567-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
C. B. Azzoni, D. D. I. Martino, V. Marchesi, B. Messiga, and M. P. Riccardi, Colour attributes of medieval window panes: Electron paramagnetic resonance and probe microanalyses on stained glass windows from Pavia-Carthusian monastery, Archaeometry 47(2), 381 (2005)
CrossRef ADS Google scholar
[2]
S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)
CrossRef ADS Google scholar
[3]
G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 330(3), 377 (1908)
CrossRef ADS Google scholar
[4]
N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111(6), 3913 (2011)
CrossRef ADS Google scholar
[5]
H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer, 1988
[6]
L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19), 5636 (1998)
CrossRef ADS Google scholar
[7]
B. Auguié and W. L. Barnes, Collective resonances in gold nanoparticle arrays, Phys. Rev. Lett. 101(14), 143902 (2008)
CrossRef ADS Google scholar
[8]
T. J. Yim, Y. Wang, and X. Zhang, Synthesis of a gold nanoparticle dimer plasmonic resonator through two-phase-mediated functionalization, Nanotechnology 19(43), 435605 (2008)
CrossRef ADS Google scholar
[9]
D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)
CrossRef ADS Google scholar
[10]
S. Shen, L. Meng, Y. Zhang, J. Han, Z. Ma, S. Hu, Y. He, J. Li, B. Ren, T.M. Shih, Z. Wang, Z. Yang, and Z. Tian, Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities, Nano Lett. 15(10), 6716 (2015)
CrossRef ADS Google scholar
[11]
Z. Q. Tian and B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 55(1), 197 (2004)
CrossRef ADS Google scholar
[12]
E. C. Le Ru and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)
CrossRef ADS Google scholar
[13]
L. Li, T. Li, S. M. Wang, and S. N. Zhu, Collimated plasmon beam: Nondiffracting versus linearly focused, Phys. Rev. Lett. 110(4), 046807 (2013)
CrossRef ADS Google scholar
[14]
Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Plasmonic nanolaser using epitaxially grown silver film, Science 337(6093), 450 (2012)
CrossRef ADS Google scholar
[15]
A. V. Krasavin and A. V. Zayats, Photonic signal processing on electronic scales: Electro-optical field-effect nanoplasmonic modulator, Phys. Rev. Lett. 109(5), 053901 (2012)
CrossRef ADS Google scholar
[16]
M. L. Brongersma and V. M. Shalaev, The case for plasmonics, Science 328(5977), 440 (2010)
CrossRef ADS Google scholar
[17]
S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
[18]
W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, A plasmonic Fano switch, Nano Lett. 12(9), 4977 (2012)
CrossRef ADS Google scholar
[19]
A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)
CrossRef ADS Google scholar
[20]
H. Wang, C. S. Levin, and N. J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates, J. Am. Chem. Soc. 127(43), 14992 (2005)
CrossRef ADS Google scholar
[21]
Z. Dong, M. Asbahi, J. Lin, D. Zhu, Y. M. Wang, K. Hippalgaonkar, H. S. Chu, W. P. Goh, F. Wang, Z. Huang, and J. K. W. Yang, Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates, Nano Lett. 15(9), 5976 (2015)
CrossRef ADS Google scholar
[22]
J. Y. Park, L. R. Baker, and G. A. Somorjai, Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions, Chem. Rev. 115(8), 2781 (2015)
CrossRef ADS Google scholar
[23]
R. Esteban, A. Zugarramurdi, P. Zhang, P. Nordlander, F. J. García-Vidal, A. G. Borisov, and J. Aizpurua, A classical treatment of optical tunneling in plasmonic gaps: Extending the quantum corrected model to practical situations, Faraday Discuss. 178, 151 (2015)
CrossRef ADS Google scholar
[24]
C.Y. Li, J.C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.L. Yang, J.F. Li, T. Wandlowski, and Z.Q. Tian, In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy, J. Am. Chem. Soc. 137(24), 7648 (2015)
CrossRef ADS Google scholar
[25]
L. M. Tong, H. X. Xu, and M. Käll, Nanogaps for SERS applications, MRS Bull. 39(2), 193 (2014)
CrossRef ADS Google scholar
[26]
K. D. Alexander, S. P. Zhang, A. R. Hight Walker, H. X. Xu, and R. Lopez, Relationship between length and surface-enhanced raman spectroscopy signal strength in metal nanoparticle chains: Ideal models versus nanofabrication, J. Nanotechnol. 2012, 840245 (2012)
CrossRef ADS Google scholar
[27]
K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
CrossRef ADS Google scholar
[28]
F. Huang and J. J. Baumberg, Actively tuned plasmons on elastomerically driven Au nanoparticle dimers, Nano Lett. 10(5), 1787 (2010)
CrossRef ADS Google scholar
[29]
P. Dombi, A. Hörl, P. Rácz, I. Márton, A. Trügler,J. R. Krenn, and U. Hohenester, Ultrafast strong-field photoemission from plasmonic nanoparticles, Nano Lett. 13(2), 674 (2013)
CrossRef ADS Google scholar
[30]
R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model, Nat. Commun. 3, 825 (2012)
CrossRef ADS Google scholar
[31]
J. H. Yoon, Y. Zhou, M. G. Blaber, G. C. Schatz, and S. Yoon, Surface plasmon coupling of compositionally heterogeneous core-satellite nanoassemblies, J. Phys. Chem. Lett. 4(9), 1371 (2013)
CrossRef ADS Google scholar
[32]
J. H. Yoon, J. Lim, and S. Yoon, Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies, ACS Nano 6(8), 7199 (2012)
CrossRef ADS Google scholar
[33]
S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Flexible plasmonics on unconventional and nonplanar substrates, Adv. Mater. 23(38), 4422 (2011)
CrossRef ADS Google scholar
[34]
L. Lermusiaux, V. Maillard, and S. Bidault, Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers, ACS Nano 9(1), 978 (2015)
CrossRef ADS Google scholar
[35]
B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, and K. J. M. Bishop, Self-assembly: From crystals to cells, Soft Matter 5(6), 1110 (2009)
CrossRef ADS Google scholar
[36]
Z. M. Zhu, H. F. Meng, W. J. Liu, X. F. Liu, J. X. Gong, X. H. Qiu, L. Jiang, D. Wang, and Z. Y. Tang, Superstructures and SERS properties of gold nanocrystals with different shapes, Angew. Chem. Int. Ed. 50(7), 1593 (2011)
CrossRef ADS Google scholar
[37]
W. Cheng, M. J. Campolongo, J. J. Cha, S. J. Tan, C. C. Umbach, D. A. Muller, and D. Luo, Free-standing nanoparticle superlattice sheets controlled by DNA, Nat. Mater. 8(6), 519 (2009)
CrossRef ADS Google scholar
[38]
M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, Self-assembled nanoparticle arrays for multiphase trace analyte detection, Nat. Mater. 12(2), 165 (2013)
CrossRef ADS Google scholar
[39]
L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres, Nano Lett. 12(3), 1424 (2012)
CrossRef ADS Google scholar
[40]
Z. Yang, S. Chen, P. Fang, B. Ren, H. H. Girault, and Z. Tian, LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface, Phys. Chem. Chem. Phys. 15(15), 5374 (2013)
CrossRef ADS Google scholar
[41]
H. Liu, Z. Yang, L. Meng, Y. Sun, J. Wang, L. Yang, J. Liu, and Z. Tian, Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix, J. Am. Chem. Soc. 136(14), 5332 (2014)
CrossRef ADS Google scholar
[42]
J. Chen, B. Shen, G. Qin, X. Hu, L. Qian, Z. Wang, S. Li, Y. Ren, and L. Zuo, Fabrication of large-area, high-enhancement SERS substrates with tunable interparticle spacing and application in identifying microorganisms at the single cell level, J. Phys. Chem. C 116(5), 3320 (2012)
CrossRef ADS Google scholar
[43]
Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface, ACS Nano 6(8), 6706 (2012)
CrossRef ADS Google scholar
[44]
R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389(6653), 827 (1997)
CrossRef ADS Google scholar
[45]
A. S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12(5), 1303 (1996)
CrossRef ADS Google scholar
[46]
M. H. Kim, S. H. Im, and O. O. Park, Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly, Adv. Funct. Mater. 15(8), 1329 (2005)
CrossRef ADS Google scholar
[47]
S. W. Hong, M. Byun, and Z. Q. Lin, Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids, Angew. Chem. Int. Ed. 48(3), 512 (2009)
CrossRef ADS Google scholar
[48]
L. H. Qian and R. Mookherjee, Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering, Nano Res. 4(11), 1117 (2011)
CrossRef ADS Google scholar
[49]
L. H. Qian, S. J. Zhai, Y. T. Jiang, and B. Das, Nanoscale convection assisted self-assembly of nanoparticle monolayer, J. Mater. Chem. 22(11), 4932 (2012)
CrossRef ADS Google scholar
[50]
C. Zhang, J. Li, S. Yang, W. Jiao, S. Xiao, M. Zou, S. Yuan, F. Xiao, S. Wang, and L. Qian, Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle, Nano Res. 7(6), 824 (2014)
CrossRef ADS Google scholar
[51]
L. Z. Yi, W. H. Jiao, K. Wu, L. H. Qian, X. X. Yu, Q. Xia, K. M. Mao, S. L. Yuan, S. Wang, and Y. T. Jiang, Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection, Nano Res. 8(9), 2978 (2015)
CrossRef ADS Google scholar
[52]
J. Zhang, Y. Li, X. Zhang, and B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays, Adv. Mater. 22(38), 4249 (2010)
CrossRef ADS Google scholar
[53]
M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Template-induced structure transition in sub-10 nm self-assembling nanoparticles, Nano Lett. 14(5), 2642 (2014)
CrossRef ADS Google scholar
[54]
C. Jin, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals, Nano Lett. 5(12), 2646 (2005)
CrossRef ADS Google scholar
[55]
C. J. Jin, Z. Y. Li, M. A. McLachlan, D. W. McComb, R. M. De La Rue, and N. P. Johnson, Optical properties of tetragonal photonic crystal synthesized via template-assisted self-assembly, J. Appl. Phys. 99(11), 116109 (2006)
CrossRef ADS Google scholar
[56]
Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4(6), 1093 (2004)
CrossRef ADS Google scholar
[57]
M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution, Nano Lett. 15(9), 6066 (2015)
CrossRef ADS Google scholar
[58]
A. Pescaglini, A. O'Riordan, A. J. Quinn, and D. Iacopino, Controlled assembly of Au nanorods into 1D architectures by electric field assisted deposition, J. Mater. Chem. C 2(33), 6810 (2014)
CrossRef ADS Google scholar
[59]
H. Cha, J. H. Yoon, and S. Yoon, Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range, ACS Nano 8(8), 8554 (2014)
CrossRef ADS Google scholar
[60]
S. Malynych and G. Chumanov, Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays, J. Am. Chem. Soc. 125(10), 2896 (2003)
CrossRef ADS Google scholar
[61]
R. M. Cole, S. Mahajan, and J. J. Baumberg, Stretchable metal-elastomer nanovoids for tunable plasmons, Appl. Phys. Lett. 95(15), 154103 (2009)
CrossRef ADS Google scholar
[62]
Y. Cui, J. Zhou, V. A. Tamma, and W. Park, Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure, ACS Nano 6(3), 2385 (2012)
CrossRef ADS Google scholar
[63]
S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, Tunable surface plasmon resonance on an elastomeric substrate, Opt. Express 17(10), 8542 (2009)
CrossRef ADS Google scholar
[64]
X. Han, Y. Liu, and Y. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains, Nano Lett. 14(5), 2466 (2014)
CrossRef ADS Google scholar
[65]
K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate, Nano Lett. 10(11), 4488 (2010)
CrossRef ADS Google scholar
[66]
W. Jiao, L. Yi, C. Zhang, K. Wu, J. Li, L. Qian, S. Wang, Y. Jiang, B. Das, and S. Yuan, Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing, Nanoscale 6(22), 13809 (2014)
CrossRef ADS Google scholar
[67]
J. H. Tian, B. Liu, X. Li, Z. L. Yang, B. Ren, S. T. Wu, N. Tao, and Z. Q. Tian, Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method, J. Am. Chem. Soc. 128(46), 14748 (2006)
CrossRef ADS Google scholar
[68]
L. Z. Yi, W. H. Jiao, C. M. Zhu, K. Wu, C. Zhang, L. H. Qian, S. Wang, Y. T. Jiang, and S. L. Yuan, Nano Res. (2016) (in press)
[69]
K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics, Nature 491(7425), 574 (2012)
CrossRef ADS Google scholar
[70]
H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, Nanoplasmonics: Classical down to the nanometer scale, Nano Lett. 12(3), 1683 (2012)
CrossRef ADS Google scholar
[71]
S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Quantum plasmon resonances controlled by molecular tunnel junctions, Science 343(6178), 1496 (2014)
CrossRef ADS Google scholar
[72]
S. K. Earl, T. D. James, T. J. Davis, J. C. McCallum, R. E. Marvel,Haglund, and A. Roberts, Tunable optical antennas enabled by the phase transition in vanadium dioxide, Opt. Express 21(22), 27503 (2013)
CrossRef ADS Google scholar
[73]
L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 68 (2014)
CrossRef ADS Google scholar
[74]
Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 24 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(696 KB)

Part of a collection:

Frontiers of Plasmonics (Ed. Hong-Xing Xu)

695

Accesses

2

Citations

Detail

Sections
Recommended

/