Laser cooling of internal degrees of freedom of molecules

R. Horchani

PDF(1367 KB)
PDF(1367 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 113301. DOI: 10.1007/s11467-016-0565-6
REVIEW ARTICLE
REVIEW ARTICLE

Laser cooling of internal degrees of freedom of molecules

Author information +
History +

Abstract

Optical pumping techniques using laser fields combined with photo-association of ultracold atoms leads to control of the vibrational and/or rotational population of molecules. In this study, we review the basic concepts and main steps that should be followed, including the excitation schemes and detection techniques used to achieve ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments because they allow the optimization of several important experimental parameters.

Keywords

cold molecule / photo-association / optical pumping / vibrational and rotational cooling

Cite this article

Download citation ▾
R. Horchani. Laser cooling of internal degrees of freedom of molecules. Front. Phys., 2016, 11(4): 113301 https://doi.org/10.1007/s11467-016-0565-6

References

[1]
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
CrossRef ADS Google scholar
[2]
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473, 493 (2011)
CrossRef ADS Google scholar
[3]
D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)
CrossRef ADS Google scholar
[4]
M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes, Wiley-Interscience, NJ: Hoboken, 2003
[5]
D. D'Alessandro, Introduction to Quantum Control and Dynamics, Boca Raton: Chapman and Hall, 2007
CrossRef ADS Google scholar
[6]
G. Quéméner and P. S.Julienne, Ultracold molecules under control! Chem. Rev. 112(9), 4949 (2012)
CrossRef ADS Google scholar
[7]
G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de Vivie-Riedle, Cavity cooling of internal molecular motion, Phys. Rev. Lett. 99(7), 073001 (2007)
CrossRef ADS Google scholar
[8]
D. J. Tannor, R. Kosloff, and A. Bartana, Laser cooling of internal degrees of freedom of molecules by dynamically trapped states, Faraday Discuss. 113, 365 (1999)
CrossRef ADS Google scholar
[9]
S. G. Schirmer, Laser cooling of internal molecular degrees of freedom for vibrationally hot molecules, Phys. Rev. A 63(1), 013407 (2000)
CrossRef ADS Google scholar
[10]
A. Bartana, R. Kosloff, and D. J. Tannor, Laser cooling of molecular internal degrees of freedom by a series of shaped pulses, J. Chem. Phys. 99(1), 196 (1993)
CrossRef ADS Google scholar
[11]
S. A. Rice, A. R. Dinner, C. Brif, R. Chakrabarti, and H. Rabitz, Adv. Chem. Phys. 148, edited by S. A. Rice and A. R. Dinner, Wiley, 2011
[12]
E. Shuman, J. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef ADS Google scholar
[13]
J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. De-Mille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)
CrossRef ADS Google scholar
[14]
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, Magneto-optical trapping of diatomic molecules, arXiv: 1209.4069v1
[15]
M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, Sisyphus cooling of electrically trapped polyatomic molecules, Nature 491(7425), 570 (2012)
CrossRef ADS Google scholar
[16]
J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice, Nat. Phys. 6(4), 265 (2010)
CrossRef ADS Google scholar
[17]
S. Ospelkaus, K.-K. Ni, G. Quéméner, B. Neyenhuis, D. Wang, M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Controlling the hyperfine state of rovibronic ground-state polar molecules, Phys. Rev. Lett. 104, 030402 (2010), arXiv: 0908.3931
CrossRef ADS Google scholar
[18]
G. Pichler, S. Milosevic, D. Viza, and R. Beuc, Diffuse bands in the visible absorption spectra of dense alkali vapours, J. Phys. At. Mol. Opt. Phys. 16(24), 4619 (1983)
CrossRef ADS Google scholar
[19]
R. B. Jones, J. H. Schloss, and J. G. Eden, Excitation spectra for the photoassociation of Kr–F and Xe–I collision pairs in the ultraviolet (208–258 nm), J. Chem. Phys. 98(6), 4317 (1993)
CrossRef ADS Google scholar
[20]
U. Marvet and M. Dantus, Femtosecond photoassociation spectroscopy: Coherent bond formation, Chem. Phys. Lett. 245(4-5), 393 (1995)
CrossRef ADS Google scholar
[21]
T. Ban, S. Ter-Avetisyan, R. Beuc, H. Skenderovic, and G. Pichler, Photoassociation of cesium atoms into the double minimum state, Chem. Phys. Lett. 313(1-2), 110 (1999)
CrossRef ADS Google scholar
[22]
A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Formation of cold Cs2 molecules through photo association, Phys. Rev. Lett. 80(20), 4402 (1998)
CrossRef ADS Google scholar
[23]
H. Lignier, A. Fioretti, R. Horchani, C. Drag, N. Bouloufa, M. Allegrini, O. Dulieu, L. Pruvost, P. Pillet, and D. Comparat, Deeply bound cold caesium molecules formed after 0-g resonant coupling, Phys. Chem. Chem. Phys. 13(42), 18910 (2011)
CrossRef ADS Google scholar
[24]
J. Ma, W. Liu, J. Yang, J. Wu, W. Sun, V. S. Ivanov, A. S. Skublov, V. B. Sovkov, X. Dai, and S. Jia, New observation and combined analysis of the Cs2 0-g, 0+u, and 1g states at the asymptotes 6S1/2+ 6P1/2 and 6S1/2+ 6P3/2, J. Chem. Phys. 141(24), 244310 (2014)
CrossRef ADS Google scholar
[25]
A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the Cs2 0-g long-range state, Eur. Phys. J. D 5(3), 389 (1999)
CrossRef ADS Google scholar
[26]
N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the 0g pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75(5), 052501 (2007)
CrossRef ADS Google scholar
[27]
K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)
CrossRef ADS Google scholar
[28]
R. Horchani, H. Lignier, N. Bouloufa-Maafa, A. Fioretti, P. Pillet, and D. Comparat, Triplet-singlet conversion by broadband optical pumping, Phys. Rev. A 85(3), 030502 (2012)
CrossRef ADS Google scholar
[29]
M. Raab, G. Höning, W. Demtröder, and C. R. Vidal, High resolution laser spectroscopy of Cs2 (II): Doppler-free polarization spectroscopy of the C  1Π u ←X  1Σ+g  system, J. Chem. Phys. 76(9), 4370 (1982)
CrossRef ADS Google scholar
[30]
W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtröder, and W. Müller, Accurate ground state potential of Cs2 up to the dissociation limit, J. Chem. Phys. 82(12), 5354 (1985)
CrossRef ADS Google scholar
[31]
R. L. Brooks and J. L. Hunt, Helium hydride emission spectra at 550 and 640 nm, J. Chem. Phys. 89(3), 7077 (1988) http://dx.doi.org/10.1063/1.455337
CrossRef ADS Google scholar
[32]
A. Wakim, P. Zabawa, M. Haruza, and N. P. Bigelow, Luminorefrigeration: vibrational cooling of NaCs, Opt. Express 20(14), 16083 (2012)
CrossRef ADS Google scholar
[33]
T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, All-optical preparation of molecular ions in the rovibrational ground state, Nat. Phys. 6(4), 275 (2010)
CrossRef ADS Google scholar
[34]
P. F. Staanum, K. Höjbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, Rotational laser cooling of vibrationally and translationally cold molecular ions, Nat. Phys. 6(4), 271 (2010)
CrossRef ADS Google scholar
[35]
M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, Optical pumping and vibrational cooling of molecules, Science 321(5886), 232 (2008)
CrossRef ADS Google scholar
[36]
D. Sofikitis, S. Weber, A. Fioretti, R. Horchani, M. Allegrini, B. Chatel, D. Comparat, and P. Pillet, Molecular vibrational cooling by optical pumping with shaped femtosecond pulses, New J. Phys. 11(5), 055037 (2009)
CrossRef ADS Google scholar
[37]
A. Kastler, Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique, J. Phys. Radium 11(6), 255 (1950)
CrossRef ADS Google scholar
[38]
J. T. Bahns, W. C. Stwalley, and P. L. Gould, Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration, J. Chem. Phys. 104(24), 9689 (1996)
CrossRef ADS Google scholar
[39]
U. Diemer, R. Duchowicz, M. Ertel, E. Mehdizadeh, W. Demtröder, Doppler-free polarization spectroscopy of the B 1Πu state of Cs2, Chem. Phys. Lett. 164(4), 419 (1989)
CrossRef ADS Google scholar
[40]
D. Sofikitis, R. Horchani, Xiaolin Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, Vibrational cooling of cesium molecules using noncoherent broadband light, Phys. Rev. A 80, 051401(R) (2009)
[41]
R. Horchani, Femtosecond laser shaping with digital light processing, Opt. Quantum Electron. 47(8), 3023 (2015)
CrossRef ADS Google scholar
[42]
J. Tallant and L. Marcassa, Bull. Am. Phys. Soc. 59, 3004 (2014)
[43]
D. Wang, C. Ashbaugh, J. T. Kim, E. E. Eyler, P. L. Gould, and W. C. Stwalley, Rotationally resolved depletion spectroscopy of ultracold KRb molecules, Phys. Rev. A 75(3), 032511 (2007)
CrossRef ADS Google scholar
[44]
K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, Coherent transfer of photoassociated molecules into the rovibrational ground state, Phys. Rev. Lett. 105, 203001 (2010), arXiv: 1008.5034
CrossRef ADS Google scholar
[45]
I. Manai, R. Horchani, H. Lignier, P. Pillet, D. Comparat, A. Fioretti, and M. Allegrini, Phys. Rev. Lett. 109, 183001 (2012) and Viewpoint: Nicholas Bigelow: Deep molecular cooling, Physics 5, 121 (2012)
CrossRef ADS Google scholar
[46]
A. Fioretti, D. Sofikitis, R. Horchani, X. Li, M. Pichler, S. Weber, M. Allegrini, B. Chatel, D. Comparat, and P. Pillet, Cold cesium molecules: from formation to cooling, J. Mod. Opt. 56, 2089 (2009)
CrossRef ADS Google scholar
[47]
J. T. Bahns, W. C. Stwalley, and P. L. Gould, Laser cooling of molecules: A sequential scheme for rotation, translation, and vibration, J. Chem. Phys. 104(24), 9689 (1996)
CrossRef ADS Google scholar
[48]
M. D. Rosa, Laser-cooling molecules, Eur. Phys. J. D 31(2), 395 (2004)
CrossRef ADS Google scholar
[49]
J. Pérez-Ríos, M. Lepers, and O. Dulieu, Theory of long-range ultracold atom-molecule photoassociation, Phys. Rev. Lett. 115(7), 073201 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1367 KB)

Accesses

Citations

Detail

Sections
Recommended

/