Hopf algebras and Dyson–Schwinger equations
Stefan Weinzierl
Hopf algebras and Dyson–Schwinger equations
In this paper I discuss Hopf algebras and Dyson–Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson–Schwinger equations.
Feynman integrals / Hopf algebras / Dyson–Schwinger equations
[1] |
H. Hopf, Über Die Topologie der Gruppen-Mannigfaltigkeiten und Ihre Verallgemeinerungen, Ann. Math. 42(1), 22 (1941)
CrossRef
ADS
Google scholar
|
[2] |
S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111(4), 613 (1987)
CrossRef
ADS
Google scholar
|
[3] |
D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2, 303 (1998)
CrossRef
ADS
Google scholar
|
[4] |
A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199(1), 203 (1998)
CrossRef
ADS
Google scholar
|
[5] |
S. Weinzierl, Hopf algebra structures in particle physics, Eur. Phys. J. C 33(S1), s871 (2004)
CrossRef
ADS
Google scholar
|
[6] |
M. Sweedler, Hopf Algebras, New York: Benjamin, 1969
|
[7] |
C. Kassel, Quantum Groups, New York: Springer, 1995
CrossRef
ADS
Google scholar
|
[8] |
S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Int. J. Mod. Phys. A 05(01), 1 (1990)
CrossRef
ADS
Google scholar
|
[9] |
D. Manchon, Hopf algebras, from basics to applications to renormalization, arXiv: math/0408405, 2004
|
[10] |
A. Frabetti, Renormalization Hopf algebras and combinatorial groups, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2007 Villa de Leyva Summer School, pp. 159–219, Cambridge University Press, 2010, arXiv: 0805.4385
|
[11] |
R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119(1), 1 (1996)
CrossRef
ADS
Google scholar
|
[12] |
P. Schupp, Quantum groups, noncommutative differential geometry and applications, Ph.D. thesis, UC, Berkeley (1993)
|
[13] |
J. Ecalle, ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux 15(2), 411 (2003)
CrossRef
ADS
Google scholar
|
[14] |
C. Reutenauer, Free Lie Algebras, Oxford: Clarendon Press, 1993
|
[15] |
S. Weinzierl, Feynman graphs, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 381–406, Vienna: Springer, 2013, arXiv: 1301.6918
|
[16] |
C. Bogner and S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25(13), 2585 (2010)
CrossRef
ADS
Google scholar
|
[17] |
W. Zimmermann, Convergence of Bogoliubov’s method of renormalization in momentum space, Commun. Math. Phys. 15(3), 208 (1969)
CrossRef
ADS
Google scholar
|
[18] |
K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras in renormalization of perturbative quantum field theory, Fields Inst. Commun. 50, 47 (2007)
|
[19] |
T. Krajewski and R. Wulkenhaar, On Kreimer’s Hopf algebra structure of Feynman graphs, Eur. Phys. J. C 7(4), 697 (1999)
CrossRef
ADS
Google scholar
|
[20] |
D. Kreimer, On overlapping divergences, Commun. Math. Phys. 204(3), 669 (1999)
CrossRef
ADS
Google scholar
|
[21] |
A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (1): The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210(1), 249 (2000)
CrossRef
ADS
Google scholar
|
[22] |
A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem (2): The beta function, diffeomorphisms and the renormalization group, Commun. Math. Phys. 216(1), 215 (2001)
CrossRef
ADS
Google scholar
|
[23] |
W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Commun. Math. Phys. 276(3), 773 (2007)
CrossRef
ADS
Google scholar
|
[24] |
K. Ebrahimi-Fard and F. Patras, Exponential Renormalization, Ann. Henri Poincare 11(5), 943 (2010)
CrossRef
ADS
Google scholar
|
[25] |
K. Ebrahimi-Fard and F. Patras, Exponential renormalization (II): Bogoliubov’s R-operation and momentum subtraction schemes, J. Math. Phys. 53(8), 083505 (2012)
CrossRef
ADS
Google scholar
|
[26] |
A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5(4), 497 (1998)
CrossRef
ADS
Google scholar
|
[27] |
A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv: math.AG/0103059, 2001
|
[28] |
J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353, 907 (2001)
CrossRef
ADS
Google scholar
|
[29] |
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167(3), 177 (2005)
CrossRef
ADS
Google scholar
|
[30] |
E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15(05), 725 (2000)
CrossRef
ADS
Google scholar
|
[31] |
T. Gehrmann and E. Remiddi, Two-loop master integrals for jets: The planar topologies, Nucl. Phys. B 601(1-2), 248 (2001)
CrossRef
ADS
Google scholar
|
[32] |
N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle) 90, 123 (1909)
|
[33] |
S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theory 148, 328 (2015)
CrossRef
ADS
Google scholar
|
[34] |
L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55(10), 102301 (2014)
CrossRef
ADS
Google scholar
|
[35] |
L. Adams, C. Bogner, and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys. 56(7), 072303 (2015)
CrossRef
ADS
Google scholar
|
[36] |
K. T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83(5), 831 (1977)
CrossRef
ADS
Google scholar
|
[37] |
F. Brown, Iterated integrals in quantum field theory, in Geometric and Topological Methods for Quantum Field Theory Proceedings of the 2009 Villa de Leyva Summer School, pp. 188–240, Cambridge University Press, 2013
|
[38] |
J. Ablinger, J. Blümlein, and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials,J. Math. Phys. 52(10), 102301 (2011)
CrossRef
ADS
Google scholar
|
[39] |
M. E. Hoffman, Quasi-shuffle products, J. Algebr. Comb. 11(1), 49 (2000)
CrossRef
ADS
Google scholar
|
[40] |
L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150(1), 117 (2000)
CrossRef
ADS
Google scholar
|
[41] |
S. Moch, P. Uwer, and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multi-loop integrals, J. Math. Phys. 43(6), 3363 (2002)
CrossRef
ADS
Google scholar
|
[42] |
A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128(2), 209 (2005)
CrossRef
ADS
Google scholar
|
[43] |
C. Duhr, Mathematical aspects of scattering amplitudes, arXiv: 1411.7538, 2014
|
[44] |
I. Bierenbaum, D. Kreimer, and S. Weinzierl, The next-to-ladder approximation for linear Dyson-Schwinger equations, Phys. Lett. B 646(2-3), 129 (2007)
CrossRef
ADS
Google scholar
|
[45] |
C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys. 10, 133 (2006)
|
[46] |
D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory, Commun. Math. Phys. 279(2), 401 (2008)
CrossRef
ADS
Google scholar
|
[47] |
L. Foissy, General Dyson-Schwinger equations and systems, Commun. Math. Phys. 327(1), 151 (2014)
CrossRef
ADS
Google scholar
|
[48] |
O. Krüger and D. Kreimer, Filtrations in Dyson-Schwinger equations: Next-to j-leading log expansions systematically, Ann. Phys. 360, 293 (2015)
CrossRef
ADS
Google scholar
|
[49] |
I. Bierenbaum and S. Weinzierl, The massless two-loop two-point function, Eur. Phys. J. C 32(1), 67 (2003)
CrossRef
ADS
Google scholar
|
[50] |
D. Kreimer and E. Panzer, Renormalization and Mellin transforms, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, pp. 195–223, Vienna: Springer, 2013, arXiv: 1207.6321
|
[51] |
E. Panzer, Renormalization, Hopf algebras and Mellin transforms, arXiv: 1407.4943, 2014
|
[52] |
F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287(3), 925 (2009)
CrossRef
ADS
Google scholar
|
[53] |
D. J. Broadhurst and D. Kreimer, Exact solutions of Dyson-Schwinger equations for iterated one loop integrals and propagator coupling duality, Nucl. Phys. B 600(2), 403 (2001)
CrossRef
ADS
Google scholar
|
[54] |
D. Kreimer and K. Yeats, An etude in non-linear Dyson-Schwinger equations, Nucl. Phys. B Proc. Suppl. 160, 116 (2006)
CrossRef
ADS
Google scholar
|
[55] |
G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QED beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 324, 205 (2009)
CrossRef
ADS
Google scholar
|
[56] |
G. van Baalen, D. Kreimer, D. Uminsky, and K. Yeats, The QCD beta-function from global solutions to Dyson-Schwinger equations, Ann. Phys. 325(2), 300 (2010)
CrossRef
ADS
Google scholar
|
[57] |
M. P. Bellon and P. J. Clavier, Higher order corrections to the asymptotic perturbative solution of a Schwinger-Dyson equation, Lett. Math. Phys. 104(6), 749 (2014)
CrossRef
ADS
Google scholar
|
[58] |
M. P. Bellon and P. J. Clavier, A Schwinger-Dyson equation in the Borel plane: Singularities of the solution, Lett. Math. Phys. 105(6), 795 (2015)
CrossRef
ADS
Google scholar
|
[59] |
P. J. Clavier, Analytic results for Schwinger-Dyson equations with a mass term, Lett. Math. Phys. 105(6), 779 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |