Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

Yi-Han Cheng, Chuan-Yu Zhang, Juan Ren, Kai-Yu Tong

PDF(602 KB)
PDF(602 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 113101. DOI: 10.1007/s11467-016-0559-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

Author information +
History +

Abstract

New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen (h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the Cn-BN (n= 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96–13.59˚A by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped Cn-intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10–21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (–80 ◦C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

Keywords

hydrogen storage / boron nitrogen / doping / first-principles / grand canonical Monte Carlo

Cite this article

Download citation ▾
Yi-Han Cheng, Chuan-Yu Zhang, Juan Ren, Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101 https://doi.org/10.1007/s11467-016-0559-4

References

[1]
L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861), 353 (2001)
CrossRef ADS Google scholar
[2]
J. A. Turner, A realizable renewable energy future, Science 285(5428), 687 (1999)
CrossRef ADS Google scholar
[3]
J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
CrossRef ADS Google scholar
[4]
A. W. C. van den Berg, and C. O. Arean, Materials for hydrogen storage: Current research trends and perspectives, Chem. Commun. 669(6), 668 (2008)
CrossRef ADS Google scholar
[5]
M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle, Hydrogen storage: The remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9(21), 2643 (2007)
CrossRef ADS Google scholar
[6]
H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Côté, R. E. Taylor, M. O’Keeffe, and O. M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822), 268 (2007)
CrossRef ADS Google scholar
[7]
J. L. Belof, A. C. Stern, M. Eddaoudi, and B. Space, On the mechanism of hydrogen storage in a metal-organic framework material, J. Am. Chem. Soc. 129(49), 15202 (2007)
CrossRef ADS Google scholar
[8]
S. S. Han, H. Furukawa, O. M. Yaghi, and W. A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc. 130(35), 11580 (2008)
CrossRef ADS Google scholar
[9]
Z. Y. Zhong, Z. T. Xiong, L. F. Sun, J. Z. Luo, P. Chen, X. Wu, J. Lin, and K. L. Tan, Nanosized nickel (or cobalt)/graphite composites for hydrogen storage, J. Phys. Chem. B 106(37), 9507 (2002)
CrossRef ADS Google scholar
[10]
J. Jiang, R. Babarao, and Z. Hu, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: From zeolites, metal–organic frameworks to protein crystals, Chem. Soc. Rev. 40(7), 3599 (2011)
CrossRef ADS Google scholar
[11]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[12]
M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8(10), 3498 (2008)
CrossRef ADS Google scholar
[13]
J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc. Natl. Acad. Sci. USA 107(7), 2801 (2010)
CrossRef ADS Google scholar
[14]
M. Khazaei, M. S. Bahramy, N. S. Venkataramanan, H. Mizuseki, and Y. Kawazoe, Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage, J. Appl. Phys. 106(9), 094303 (2009)
CrossRef ADS Google scholar
[15]
L. P. Zhang, P. Wu, and M. B. Sullivan, Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes, J. Phys. Chem. C 115(10), 4289 (2011)
CrossRef ADS Google scholar
[16]
M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Boron nitride nanomesh, Science 303(5655), 217 (2004)
CrossRef ADS Google scholar
[17]
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
CrossRef ADS Google scholar
[18]
A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)
CrossRef ADS Google scholar
[19]
J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. A 106(740), 749 (1924)
CrossRef ADS Google scholar
[20]
D. Chung, Review graphite, J. Mater. Sci. 37(8), 1475 (2002)
CrossRef ADS Google scholar
[21]
Y. Baskin and L. Meyer, Lattice constants of graphite at low temperatures, Phys. Rev. 100(2), 544 (1955)
CrossRef ADS Google scholar
[22]
V. L. Solozhenko, G. Will, and F. Elf, Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa, Solid State Commun. 96(1), 1 (1995)
CrossRef ADS Google scholar
[23]
W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko, and S. Podsiadlo, Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range, Appl. Phys. A 75(3), 431 (2002)
CrossRef ADS Google scholar
[24]
A. Marini, P. Garcia-Gonzalez, and A. Rubio, First-principles description of correlation effects in layered materials, Phys. Rev. Lett. 96(13), 136404 (2006)
CrossRef ADS Google scholar
[25]
G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59(13), 8551 (1999)
CrossRef ADS Google scholar
[26]
R. Pease, An X-ray study of boron nitride, Acta Crystallogr. 5(3), 356 (1952)
CrossRef ADS Google scholar
[27]
Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)
CrossRef ADS Google scholar
[28]
S. S. Han, H. S. Kim, K. S. Han, J. Y. Lee, H. M. Lee, J. K. Kang, S. I. Woo, A. C. T. van Duin, and W. A. Goddard, Nanopores of carbon nanotubes as practical hydrogen storage media, Appl. Phys. Lett. 87(21), 213113 (2005)
CrossRef ADS Google scholar
[29]
S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen, Proc. Natl. Acad. Sci. U.S.A. 102(30), 10439 (2005)
CrossRef ADS Google scholar
[30]
W. Q. Deng, X. Xu, and Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett. 92(16), 166103 (2004)
CrossRef ADS Google scholar
[31]
M. S. Fuhrer, J. G. Hou, X. D. Xiang, and A. Zettl, C60 intercalated graphite: Predictions and experiments, Solid State Commun. 90(6), 357 (1994)
CrossRef ADS Google scholar
[32]
V. Gupta, P. Scharff, K. Risch, H. Romanus, and R. Müller, Synthesis of C60 intercalated graphite, Solid State Commun. 131(3-4), 153 (2004)
CrossRef ADS Google scholar
[33]
A. Kuc, L. Zhechkov, S. Patchkovskii, G. Seifert, and T. Heine, Hydrogen sieving and storage in fullerene intercalated graphite, Nano Lett. 7(1), 1 (2007)
CrossRef ADS Google scholar
[34]
Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage, J. Am. Chem. Soc. 127(46), 16006 (2005)
CrossRef ADS Google scholar
[35]
S. S. Han and S. S. Jang, A hydrogen storage nanotank: Lithium-organic pillared graphite, Chem. Commun. 36(36), 5427 (2009)
CrossRef ADS Google scholar
[36]
J. H. Guo, H. Zhang, and Y. Miyamoto, New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage, Phys. Chem. Chem. Phys. 15(21), 8199 (2013)
CrossRef ADS Google scholar
[37]
J. Ren, H. Zhang, and X. L. Cheng, Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous LiBH4, Comput. Mater. Sci. 71, 109 (2013)
CrossRef ADS Google scholar
[38]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef ADS Google scholar
[39]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[40]
G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter 6(40), 8245 (1994)
CrossRef ADS Google scholar
[41]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[42]
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
CrossRef ADS Google scholar
[43]
D. Frenkel and B. Smit, Understanding Molecular Simulation, Computational Science Series, San Diego: Academic Press, 2002
[44]
A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1), 29 (2003)
CrossRef ADS Google scholar
[45]
S. L. Mayo, B. D. Olafson, and Goddard, Dreiding: A generic force field for molecular simulations, J. Phys. Chem. 94(26), 8897 (1990)
CrossRef ADS Google scholar
[46]
Q. Y. Yang and C. L. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B 109(24), 11862 (2005)
CrossRef ADS Google scholar
[47]
G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, J. Phys. Chem. B 109(27), 13094 (2005)
CrossRef ADS Google scholar
[48]
T. Düren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Design of new materials for methane storage, Langmuir 20(7), 2683 (2004)
CrossRef ADS Google scholar
[49]
B. Assfour and G. Seifert, Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments, Microporous Mesoporous Mater. 133(1-3), 59 (2010)
CrossRef ADS Google scholar
[50]
O. Talu and A. L. Myers, Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AIChE J. 47(5), 1160 (2001)
CrossRef ADS Google scholar
[51]
H. Frost, T. Düren, and R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B 110(19), 9565 (2006)
CrossRef ADS Google scholar
[52]
R. Q. Snurr, A. T. Bell, and D. N. Theodorou, Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions, J. Phys. Chem. 97(51), 13742 (1993)
CrossRef ADS Google scholar
[53]
H. Tanaka, J. Fan, H. Kanoh, H. Yudasaka, S. Iijima, and K. Kaneko, Quantum nature of adsorbed hydrogen on single-wall carbon nanohorns, Mol. Simul. 31(6-7), 465 (2005)
CrossRef ADS Google scholar
[54]
D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, Monte Carlo simulations of hydrogen storage in carbon nanotubes, J. Phys. Condens. Matter 14(40), 9285 (2002)
CrossRef ADS Google scholar
[55]
P. Kowalczyk, H. Tanaka, R. Hołyst, K. Kaneko, T. Ohmori, and J. Miyamoto, Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation, J. Phys. Chem. B 109(36), 17174 (2005)
CrossRef ADS Google scholar
[56]
B. Panella, M. Hirscher, H. Pütter, and U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater. 16(4), 520 (2006)
CrossRef ADS Google scholar
[57]
Y. W. Li and R. T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover, J. Am. Chem. Soc. 128(25), 8136 (2006)
CrossRef ADS Google scholar
[58]
L. J. Murray, M. Dincă, and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1294 (2009)
CrossRef ADS Google scholar
[59]
S. K. Bhatia and A. L. Myers, Optimum conditions for adsorptive storage, Langmuir 22(4), 1688 (2006)
CrossRef ADS Google scholar
[60]
K. Srinivasu, K. R. S. Chandrakumar, and S. K. Ghosh, Quantum chemical studies on hydrogen adsorption in carbon-based model systems: role of charged surface and the electronic induction effect, Phys. Chem. Chem. Phys. 10(38), 5832 (2008)
CrossRef ADS Google scholar
[61]
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc. 127(42), 14582 (2005)
CrossRef ADS Google scholar
[62]
K. L. Mulfort and J. T. Hupp, Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding, J. Am. Chem. Soc. 129(31), 9604 (2007)
CrossRef ADS Google scholar
[63]
D. Himsl, D. Wallacher, and M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53 (Al) structural analogue by lithium doping, Angew. Chem. Int. Ed. 48(25), 4639 (2009)
CrossRef ADS Google scholar
[64]
Z. H. Xiang, Z. Hu, W. T. Yang, and D. P. Cao, Lithium doping on metal-organic frameworks for enhancing H2 storage, Int. J. Hydrogen Energy 37(1), 946 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(602 KB)

Accesses

Citations

Detail

Sections
Recommended

/