Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

Yi-Han Cheng , Chuan-Yu Zhang , Juan Ren , Kai-Yu Tong

Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 113101

PDF (602KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 113101 DOI: 10.1007/s11467-016-0559-4
RESEARCH ARTICLE

Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

Author information +
History +
PDF (602KB)

Abstract

New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen (h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the Cn-BN (n= 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96–13.59˚A by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped Cn-intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10–21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (–80 ◦C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

Keywords

hydrogen storage / boron nitrogen / doping / first-principles / grand canonical Monte Carlo

Cite this article

Download citation ▾
Yi-Han Cheng, Chuan-Yu Zhang, Juan Ren, Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101 DOI:10.1007/s11467-016-0559-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861), 353 (2001)

[2]

J. A. Turner, A realizable renewable energy future, Science 285(5428), 687 (1999)

[3]

J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)

[4]

A. W. C. van den Berg, and C. O. Arean, Materials for hydrogen storage: Current research trends and perspectives, Chem. Commun. 669(6), 668 (2008)

[5]

M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle, Hydrogen storage: The remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9(21), 2643 (2007)

[6]

H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Côté, R. E. Taylor, M. O’Keeffe, and O. M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822), 268 (2007)

[7]

J. L. Belof, A. C. Stern, M. Eddaoudi, and B. Space, On the mechanism of hydrogen storage in a metal-organic framework material, J. Am. Chem. Soc. 129(49), 15202 (2007)

[8]

S. S. Han, H. Furukawa, O. M. Yaghi, and W. A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc. 130(35), 11580 (2008)

[9]

Z. Y. Zhong, Z. T. Xiong, L. F. Sun, J. Z. Luo, P. Chen, X. Wu, J. Lin, and K. L. Tan, Nanosized nickel (or cobalt)/graphite composites for hydrogen storage, J. Phys. Chem. B 106(37), 9507 (2002)

[10]

J. Jiang, R. Babarao, and Z. Hu, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: From zeolites, metal–organic frameworks to protein crystals, Chem. Soc. Rev. 40(7), 3599 (2011)

[11]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

[12]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8(10), 3498 (2008)

[13]

J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc. Natl. Acad. Sci. USA 107(7), 2801 (2010)

[14]

M. Khazaei, M. S. Bahramy, N. S. Venkataramanan, H. Mizuseki, and Y. Kawazoe, Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage, J. Appl. Phys. 106(9), 094303 (2009)

[15]

L. P. Zhang, P. Wu, and M. B. Sullivan, Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes, J. Phys. Chem. C 115(10), 4289 (2011)

[16]

M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Boron nitride nanomesh, Science 303(5655), 217 (2004)

[17]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)

[18]

A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)

[19]

J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. A 106(740), 749 (1924)

[20]

D. Chung, Review graphite, J. Mater. Sci. 37(8), 1475 (2002)

[21]

Y. Baskin and L. Meyer, Lattice constants of graphite at low temperatures, Phys. Rev. 100(2), 544 (1955)

[22]

V. L. Solozhenko, G. Will, and F. Elf, Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa, Solid State Commun. 96(1), 1 (1995)

[23]

W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko, and S. Podsiadlo, Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range, Appl. Phys. A 75(3), 431 (2002)

[24]

A. Marini, P. Garcia-Gonzalez, and A. Rubio, First-principles description of correlation effects in layered materials, Phys. Rev. Lett. 96(13), 136404 (2006)

[25]

G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59(13), 8551 (1999)

[26]

R. Pease, An X-ray study of boron nitride, Acta Crystallogr. 5(3), 356 (1952)

[27]

Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)

[28]

S. S. Han, H. S. Kim, K. S. Han, J. Y. Lee, H. M. Lee, J. K. Kang, S. I. Woo, A. C. T. van Duin, and W. A. Goddard, Nanopores of carbon nanotubes as practical hydrogen storage media, Appl. Phys. Lett. 87(21), 213113 (2005)

[29]

S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen, Proc. Natl. Acad. Sci. U.S.A. 102(30), 10439 (2005)

[30]

W. Q. Deng, X. Xu, and Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett. 92(16), 166103 (2004)

[31]

M. S. Fuhrer, J. G. Hou, X. D. Xiang, and A. Zettl, C60 intercalated graphite: Predictions and experiments, Solid State Commun. 90(6), 357 (1994)

[32]

V. Gupta, P. Scharff, K. Risch, H. Romanus, and R. Müller, Synthesis of C60 intercalated graphite, Solid State Commun. 131(3-4), 153 (2004)

[33]

A. Kuc, L. Zhechkov, S. Patchkovskii, G. Seifert, and T. Heine, Hydrogen sieving and storage in fullerene intercalated graphite, Nano Lett. 7(1), 1 (2007)

[34]

Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage, J. Am. Chem. Soc. 127(46), 16006 (2005)

[35]

S. S. Han and S. S. Jang, A hydrogen storage nanotank: Lithium-organic pillared graphite, Chem. Commun. 36(36), 5427 (2009)

[36]

J. H. Guo, H. Zhang, and Y. Miyamoto, New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage, Phys. Chem. Chem. Phys. 15(21), 8199 (2013)

[37]

J. Ren, H. Zhang, and X. L. Cheng, Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous LiBH4, Comput. Mater. Sci. 71, 109 (2013)

[38]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)

[39]

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

[40]

G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter 6(40), 8245 (1994)

[41]

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

[42]

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)

[43]

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computational Science Series, San Diego: Academic Press, 2002

[44]

A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1), 29 (2003)

[45]

S. L. Mayo, B. D. Olafson, and Goddard, Dreiding: A generic force field for molecular simulations, J. Phys. Chem. 94(26), 8897 (1990)

[46]

Q. Y. Yang and C. L. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B 109(24), 11862 (2005)

[47]

G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, J. Phys. Chem. B 109(27), 13094 (2005)

[48]

T. Düren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Design of new materials for methane storage, Langmuir 20(7), 2683 (2004)

[49]

B. Assfour and G. Seifert, Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments, Microporous Mesoporous Mater. 133(1-3), 59 (2010)

[50]

O. Talu and A. L. Myers, Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AIChE J. 47(5), 1160 (2001)

[51]

H. Frost, T. Düren, and R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B 110(19), 9565 (2006)

[52]

R. Q. Snurr, A. T. Bell, and D. N. Theodorou, Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions, J. Phys. Chem. 97(51), 13742 (1993)

[53]

H. Tanaka, J. Fan, H. Kanoh, H. Yudasaka, S. Iijima, and K. Kaneko, Quantum nature of adsorbed hydrogen on single-wall carbon nanohorns, Mol. Simul. 31(6-7), 465 (2005)

[54]

D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, Monte Carlo simulations of hydrogen storage in carbon nanotubes, J. Phys. Condens. Matter 14(40), 9285 (2002)

[55]

P. Kowalczyk, H. Tanaka, R. Hołyst, K. Kaneko, T. Ohmori, and J. Miyamoto, Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation, J. Phys. Chem. B 109(36), 17174 (2005)

[56]

B. Panella, M. Hirscher, H. Pütter, and U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater. 16(4), 520 (2006)

[57]

Y. W. Li and R. T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover, J. Am. Chem. Soc. 128(25), 8136 (2006)

[58]

L. J. Murray, M. Dincă, and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1294 (2009)

[59]

S. K. Bhatia and A. L. Myers, Optimum conditions for adsorptive storage, Langmuir 22(4), 1688 (2006)

[60]

K. Srinivasu, K. R. S. Chandrakumar, and S. K. Ghosh, Quantum chemical studies on hydrogen adsorption in carbon-based model systems: role of charged surface and the electronic induction effect, Phys. Chem. Chem. Phys. 10(38), 5832 (2008)

[61]

Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc. 127(42), 14582 (2005)

[62]

K. L. Mulfort and J. T. Hupp, Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding, J. Am. Chem. Soc. 129(31), 9604 (2007)

[63]

D. Himsl, D. Wallacher, and M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53 (Al) structural analogue by lithium doping, Angew. Chem. Int. Ed. 48(25), 4639 (2009)

[64]

Z. H. Xiang, Z. Hu, W. T. Yang, and D. P. Cao, Lithium doping on metal-organic frameworks for enhancing H2 storage, Int. J. Hydrogen Energy 37(1), 946 (2012)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (602KB)

1015

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/