Uncertainty relations for general phase spaces

Reinhard F. Werner

PDF(301 KB)
PDF(301 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 110305. DOI: 10.1007/s11467-016-0558-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Uncertainty relations for general phase spaces

Author information +
History +

Abstract

We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

Keywords

uncertainty relations / phase space / measurement uncertainty

Cite this article

Download citation ▾
Reinhard F. Werner. Uncertainty relations for general phase spaces. Front. Phys., 2016, 11(3): 110305 https://doi.org/10.1007/s11467-016-0558-5

References

[1]
J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin: Springer, 1932
[2]
L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty relations for angular momentum, New J. Phys.17, 093046 (2015), arXiv: 1505.00049
[3]
P. Busch, P. Lahti, and R. F. Werner, Proof of Heisenberg’s error-disturbance relation, Phys. Rev. Lett.111, 160405 (2013), arXiv: 1306.1565
CrossRef ADS Google scholar
[4]
P. Busch, P. Lahti, and R. F. Werner, Measurement uncertainty relations, J. Math. Phys.55, 042111 (2014), arXiv: 1312.4392
CrossRef ADS Google scholar
[5]
R. F. Werner, The uncertainty relation for joint measurement of position and momentum, Quant. Inform. Comput.4, 546 (2004), arXiv: quant-ph/0405184
[6]
P. Busch, J. Kiukas, and R. F. Werner, Sharp uncertainty relations for number and angle, (in preparation)
[7]
R. F. Werner, Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys.13, 859 (1983)
CrossRef ADS Google scholar
[8]
R. F. Werner, Quantum harmonic analysis on phase space, J. Math. Phys.25, 1404 (1984)
CrossRef ADS Google scholar
[9]
E. Hewitt and K. Ross, Abstract Harmonic analysis (2 Vols.), Berlin: Springer, 1962, 1970
[10]
H. Reiter and J. Stegeman, Classical Harminic analysis and locally compact groups, Oxford: Clarendon, 2000
[11]
C. Villani, Optimal Transport, Springer, 2009
CrossRef ADS Google scholar
[12]
W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschr. Phys.43, 172 (1927)
CrossRef ADS Google scholar
[13]
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1972
[14]
A. L. Hashagen (in preparation)
[15]
G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta62, 980 (1989)

RIGHTS & PERMISSIONS

2016 The Author(s). This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(301 KB)

Accesses

Citations

Detail

Sections
Recommended

/