Physical basis for the symmetries in the Friedmann–Robertson–Walker metric
Fulvio Melia
Physical basis for the symmetries in the Friedmann–Robertson–Walker metric
Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczyński test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.
cosmological parameters / cosmological observations / cosmological theory / gravitation
[1] |
J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56(5), 455 (1939)
CrossRef
ADS
Google scholar
|
[2] |
G. C. McVittie, Gravitational collapse to a small volume, Astrophys. J. 140, 401 (1964)
CrossRef
ADS
Google scholar
|
[3] |
C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136(2B), B571 (1964)
CrossRef
ADS
Google scholar
|
[4] |
I. H. Thompson and G. F. Whitrow, Time-dependent internal solutions for spherically symmetrical bodies in general relativity (I): Adiabatic collapse, Mon. Not. R. Astron. Soc. 136(2), 207 (1967)
CrossRef
ADS
Google scholar
|
[5] |
G. Birkhoff, Relativity and Modern Physics, Harvard University Press, 1923
|
[6] |
H. P. Robertson, On the foundations of relativistic cosmology, Proc. Natl. Acad. Sci. USA 15(11), 822 (1929)
CrossRef
ADS
Google scholar
|
[7] |
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972
|
[8] |
F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
CrossRef
ADS
Google scholar
|
[9] |
D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530(2), 87 (2013)
CrossRef
ADS
Google scholar
|
[10] |
S. Perlmutter, G.Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of W and L from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
CrossRef
ADS
Google scholar
|
[11] |
A. G. Riess, A. V. Filippenko, P.Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
CrossRef
ADS
Google scholar
|
[12] |
M. Kowalski, D.Rubin, G. Aldering, R. J. Agostinho, A. Amadon,
CrossRef
ADS
Google scholar
|
[13] |
N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah,
CrossRef
ADS
Google scholar
|
[14] |
C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground emission, Astrophys. J. Suppl. 148(1), 97 (2003)
CrossRef
ADS
Google scholar
|
[15] |
D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148(1), 175 (2003)
CrossRef
ADS
Google scholar
|
[16] |
P. A. R. Ade,
CrossRef
ADS
Google scholar
|
[17] |
W. C. Hernandez and C. W. Misner, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J. 143, 452 (1966)
CrossRef
ADS
Google scholar
|
[18] |
M. M. May and R. H. White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev. 141(4), 1232 (1966)
CrossRef
ADS
Google scholar
|
[19] |
R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55(4), 364 (1939)
CrossRef
ADS
Google scholar
|
[20] |
J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55(4), 374 (1939)
CrossRef
ADS
Google scholar
|
[21] |
H. Stephani, D. Kramer, M. MacCallum, and C. Hoenselaers, Exact Solutions to Einstein’s Field Equations, Cambridge University Press, 2009
|
[22] |
F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
CrossRef
ADS
Google scholar
|
[23] |
F. Melia and A. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2011)
CrossRef
ADS
Google scholar
|
[24] |
R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573(1), 37 (2002)
CrossRef
ADS
Google scholar
|
[25] |
F. Melia and R. S. Maier, Cosmic chronometers in the Rh= ctuniverse, Mon. Not. R. Astron. Soc. 432(4), 2669 (2013)
CrossRef
ADS
Google scholar
|
[26] |
B. E. Schaefer, Gamma-ray burst Hubble diagram to z= 4.5, Astrophys. J. 583(2), L67 (2003)
CrossRef
ADS
Google scholar
|
[27] |
G. Ghirlanda, G. Ghisellini, and D. Lazzati, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their vFv spectrum, Astrophys. J. 616(1), 331 (2004)
CrossRef
ADS
Google scholar
|
[28] |
E. Liang and B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633(2), 611 (2005)
CrossRef
ADS
Google scholar
|
[29] |
J. J. Wei, X. F. Wu, and F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology, Astrophys. J. 772(1), 43 (2013)
CrossRef
ADS
Google scholar
|
[30] |
F. Melia, High-z quasars in the Rh= ct universe, Astrophys. J. 764(1), 72 (2013)
CrossRef
ADS
Google scholar
|
[31] |
J. J. Wei, X. F. Wu, F. Melia, and R. S. Maier, A comparative analysis of the supernova legacy survey sample with ∧CDM and the Rh= ct universe, Astron. J. 149(3), 102 (2015)
CrossRef
ADS
Google scholar
|
[32] |
A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escudé, N. P. Ross,
|
[33] |
T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby,
CrossRef
ADS
Google scholar
|
[34] |
F. Melia and M. L. Corredoira, Alcock-Paczynski test with model-independent BAO Data, Astrophys. J. 2015 (submitted), arXiv: 1503.05052
|
/
〈 | 〉 |