Physical basis for the symmetries in the Friedmann–Robertson–Walker metric

Fulvio Melia

PDF(194 KB)
PDF(194 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 119801. DOI: 10.1007/s11467-016-0557-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Physical basis for the symmetries in the Friedmann–Robertson–Walker metric

Author information +
History +

Abstract

Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczyński test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.

Keywords

cosmological parameters / cosmological observations / cosmological theory / gravitation

Cite this article

Download citation ▾
Fulvio Melia. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric. Front. Phys., 2016, 11(4): 119801 https://doi.org/10.1007/s11467-016-0557-6

References

[1]
J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56(5), 455 (1939)
CrossRef ADS Google scholar
[2]
G. C. McVittie, Gravitational collapse to a small volume, Astrophys. J. 140, 401 (1964)
CrossRef ADS Google scholar
[3]
C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136(2B), B571 (1964)
CrossRef ADS Google scholar
[4]
I. H. Thompson and G. F. Whitrow, Time-dependent internal solutions for spherically symmetrical bodies in general relativity (I): Adiabatic collapse, Mon. Not. R. Astron. Soc. 136(2), 207 (1967)
CrossRef ADS Google scholar
[5]
G. Birkhoff, Relativity and Modern Physics, Harvard University Press, 1923
[6]
H. P. Robertson, On the foundations of relativistic cosmology, Proc. Natl. Acad. Sci. USA 15(11), 822 (1929)
CrossRef ADS Google scholar
[7]
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972
[8]
F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
CrossRef ADS Google scholar
[9]
D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530(2), 87 (2013)
CrossRef ADS Google scholar
[10]
S. Perlmutter, G.Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of W and L from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
CrossRef ADS Google scholar
[11]
A. G. Riess, A. V. Filippenko, P.Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
CrossRef ADS Google scholar
[12]
M. Kowalski, D.Rubin, G. Aldering, R. J. Agostinho, A. Amadon, , Improved cosmological constraints from new, old, and combined supernova data sets, Astrophys. J. 686(2), 749 (2008)
CrossRef ADS Google scholar
[13]
N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, , The Hubble space telescope cluster supernova survey (v): Improving the dark-energy constraints above z>1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)
CrossRef ADS Google scholar
[14]
C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground emission, Astrophys. J. Suppl. 148(1), 97 (2003)
CrossRef ADS Google scholar
[15]
D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148(1), 175 (2003)
CrossRef ADS Google scholar
[16]
P. A. R. Ade, (Planck Collaboration), Planck 2013 results (XXIII): Isotropy and statistics of the CMB, Astron. Astrophys. 571, A23 (2014)
CrossRef ADS Google scholar
[17]
W. C. Hernandez and C. W. Misner, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J. 143, 452 (1966)
CrossRef ADS Google scholar
[18]
M. M. May and R. H. White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev. 141(4), 1232 (1966)
CrossRef ADS Google scholar
[19]
R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55(4), 364 (1939)
CrossRef ADS Google scholar
[20]
J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55(4), 374 (1939)
CrossRef ADS Google scholar
[21]
H. Stephani, D. Kramer, M. MacCallum, and C. Hoenselaers, Exact Solutions to Einstein’s Field Equations, Cambridge University Press, 2009
[22]
F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
CrossRef ADS Google scholar
[23]
F. Melia and A. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2011)
CrossRef ADS Google scholar
[24]
R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573(1), 37 (2002)
CrossRef ADS Google scholar
[25]
F. Melia and R. S. Maier, Cosmic chronometers in the Rh= ctuniverse, Mon. Not. R. Astron. Soc. 432(4), 2669 (2013)
CrossRef ADS Google scholar
[26]
B. E. Schaefer, Gamma-ray burst Hubble diagram to z= 4.5, Astrophys. J. 583(2), L67 (2003)
CrossRef ADS Google scholar
[27]
G. Ghirlanda, G. Ghisellini, and D. Lazzati, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their vFv spectrum, Astrophys. J. 616(1), 331 (2004)
CrossRef ADS Google scholar
[28]
E. Liang and B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633(2), 611 (2005)
CrossRef ADS Google scholar
[29]
J. J. Wei, X. F. Wu, and F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology, Astrophys. J. 772(1), 43 (2013)
CrossRef ADS Google scholar
[30]
F. Melia, High-z quasars in the Rh= ct universe, Astrophys. J. 764(1), 72 (2013)
CrossRef ADS Google scholar
[31]
J. J. Wei, X. F. Wu, F. Melia, and R. S. Maier, A comparative analysis of the supernova legacy survey sample with ∧CDM and the Rh= ct universe, Astron. J. 149(3), 102 (2015)
CrossRef ADS Google scholar
[32]
A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escudé, N. P. Ross, , Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon acoustic oscillations, J. Cosmol. Astropart. Phys. 05, 027 (2014)
[33]
T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, , Astronomy & Astrophysics, Baryon Acoustic Oscillations in the Ly forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015), arXiv: 1404.1801
CrossRef ADS Google scholar
[34]
F. Melia and M. L. Corredoira, Alcock-Paczynski test with model-independent BAO Data, Astrophys. J. 2015 (submitted), arXiv: 1503.05052

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(194 KB)

Accesses

Citations

Detail

Sections
Recommended

/