Quantum superreplication of states and gates

Giulio Chiribella, Yuxiang Yang

PDF(400 KB)
PDF(400 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 110304. DOI: 10.1007/s11467-016-0556-7
REVIEW ARTICLE
REVIEW ARTICLE

Quantum superreplication of states and gates

Author information +
History +

Abstract

Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0>while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.

Keywords

quantum cloning / quantum metrology / quantum superreplication / Heisenberg limit / quantum networks

Cite this article

Download citation ▾
Giulio Chiribella, Yuxiang Yang. Quantum superreplication of states and gates. Front. Phys., 2016, 11(3): 110304 https://doi.org/10.1007/s11467-016-0556-7

References

[1]
W. Wootters and W. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
CrossRef ADS Google scholar
[2]
D. Dieks, Communication by EPR devices, Phys. Lett. A 92(6), 271 (1982)
CrossRef ADS Google scholar
[3]
V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, Quantum cloning, Rev. Mod. Phys. 77(4), 1225 (2005)
CrossRef ADS Google scholar
[4]
N. J. Cerf and J. Fiurášek, Optical quantum cloning, Progress in Optics 49, 455 (2006)
CrossRef ADS Google scholar
[5]
C. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in: Conference on Computers, Systems and Signal Processing (Bangalore, India), pp 175–179, 1984
[6]
A. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[7]
S. Wiesner, Conjugate coding, ACM Sigact News 15(1), 78 (1983)
CrossRef ADS Google scholar
[8]
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
CrossRef ADS Google scholar
[9]
V. Bužek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54(3), 1844 (1996)
CrossRef ADS Google scholar
[10]
N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153 (1997)
CrossRef ADS Google scholar
[11]
D. Bruss, A. Ekert, and C. Macchiavello, Optimal universal quantum cloning and state estimation, Phys. Rev. Lett. 81(12), 2598 (1998)
CrossRef ADS Google scholar
[12]
J. Bae and A. Acín, Asymptotic quantum cloning is state estimation, Phys. Rev. Lett. 97(3), 030402 (2006)
CrossRef ADS Google scholar
[13]
G. Chiribella and G. M. D’Ariano, Quantum information becomes classical when distributed to many users, Phys. Rev. Lett. 97(25), 250503 (2006)
CrossRef ADS Google scholar
[14]
G. Chiribella, On quantum estimation, quantum cloning and finite quantum de Finetti theorems, in: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Volume 6519, pp 9-25, Springer, 2011
CrossRef ADS Google scholar
[15]
G. Chiribella and Y. Yang, Optimal asymptotic cloning machines, New J. Phys. 16(6), 063005 (2014)
CrossRef ADS Google scholar
[16]
S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, Criteria for continuous-variable quantum teleportation, J. Mod. Opt. 47(2-3), 267 (2000)
CrossRef ADS Google scholar
[17]
K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Quantum benchmark for storage and transmission of coherent states, Phys. Rev. Lett. 94(15), 150503 (2005)
CrossRef ADS Google scholar
[18]
G. Adesso and G. Chiribella, Quantum benchmark for teleportation and storage of squeezed states, Phys. Rev. Lett. 100(17), 170503 (2008)
CrossRef ADS Google scholar
[19]
G. Chiribella and J. Xie, Optimal design and quantum benchmarks for coherent state amplifiers, Phys. Rev. Lett. 110(21), 213602 (2013)
CrossRef ADS Google scholar
[20]
G. Chiribella and G. Adesso, Quantum benchmarks for pure single-mode Gaussian states, Phys. Rev. Lett. 112(1), 010501 (2014)
CrossRef ADS Google scholar
[21]
H. Fan, Y. N. Wang, L. Jing, J. D. Yue, H. D. Shi, Y. L. Zhang, and L. Z. Mu, Quantum cloning machines and the applications, Phys. Rep. 544(3), 241 (2014)
CrossRef ADS Google scholar
[22]
L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80(22), 4999 (1998)
CrossRef ADS Google scholar
[23]
J. Fiurášek, Optimal probabilistic cloning and purification of quantum states, Phys. Rev. A 70(3), 032308 (2004)
CrossRef ADS Google scholar
[24]
T. Ralph and A. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Ninth Inter-national Conference on Quantum Communication, Measurement and Computing (QCMC), Volume 1110, pp 155-160, AIP Publishing, 2009
CrossRef ADS Google scholar
[25]
G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)
CrossRef ADS Google scholar
[26]
F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, Implementation of a nondeterministic optical noiseless amplifier, Phys. Rev. Lett. 104(12), 123603 (2010)
CrossRef ADS Google scholar
[27]
M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, Noise-powered probabilistic concentration of phase information, Nat. Phys. 6(10), 767 (2010)
CrossRef ADS Google scholar
[28]
A. Zavatta, J. Fiurášek, and M. Bellini, A high-fidelity noiseless amplifier for quantum light states, Nat. Photonics 5(1), 52 (2011)
CrossRef ADS Google scholar
[29]
G. Chiribella, Y. Yang, and A. C.C. Yao, Quantum replication at the Heisenberg limit, Nat. Commun. 4(2915) (2013)
CrossRef ADS Google scholar
[30]
V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
CrossRef ADS Google scholar
[31]
A. Winter, Coding theorem and strong converse for quantum channels, IEEE Transactions on Information Theory 45(7), 2481 (1999)
CrossRef ADS Google scholar
[32]
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Optimal cloning of unitary transformation, Phys. Rev. Lett. 101(18), 180504 (2008)
CrossRef ADS Google scholar
[33]
W. Dür, P. Sekatski, and M. Skotiniotis, Deterministic superreplication of one-parameter unitary transformations, Phys. Rev. Lett. 114(12), 120503 (2015)
CrossRef ADS Google scholar
[34]
G. Chiribella, Y. Yang, and C. Huang, Universal superreplication of unitary gates, Phys. Rev. Lett. 114(12), 120504 (2015)
CrossRef ADS Google scholar
[35]
G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Efficient use of quantum resources for the transmission of a reference frame, Phys. Rev. Lett. 93(18), 180503 (2004)
CrossRef ADS Google scholar
[36]
E. Bagan, M. Baig, and R. Munoz-Tapia, Quantum reverse engineering and reference-frame alignment without nonlocal correlations, Phys. Rev. A 70(3), 030301 (2004)
CrossRef ADS Google scholar
[37]
M. Hayashi, Parallel treatment of estimation of SU(2) and phase estimation, Phys. Lett. A 354(3), 183 (2006)
CrossRef ADS Google scholar
[38]
J. Kahn, Fast rate estimation of a unitary operation in SU(d), Phys. Rev. A 75(2), 022326 (2007)
CrossRef ADS Google scholar
[39]
H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, Quantum cloning machines for equatorial qubits, Phys. Rev. A 65(1), 012304 (2001)
CrossRef ADS Google scholar
[40]
D. Bruß, M. Cinchetti, G. Mauro D’Ariano, and C. Macchiavello, Phase-covariant quantum cloning, Phys. Rev. A 62(1), 012302 (2000)
CrossRef ADS Google scholar
[41]
G. M. D’Ariano and C. Macchiavello, Optimal phase-covariant cloning for qubits and qutrits, Phys. Rev. A 67(4), 042306 (2003)
CrossRef ADS Google scholar
[42]
R. F. Reinhard, Optimal cloning of pure states, Phys. Rev. A 58(3), 1827 (1998)
CrossRef ADS Google scholar
[43]
E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17(3), 239 (1970)
CrossRef ADS Google scholar
[44]
M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25(1), 79 (1984)
CrossRef ADS Google scholar
[45]
Y. Yang and G. Chiribella, Optimal energy-preserving conversions of quantum coherence, arXiv: 1502.00259, 2015
[46]
S. Pandey, Z. Jiang, J. Combes, and C. Caves, Quantum limits on probabilistic amplifiers, Phys. Rev. A 88(3), 033852 (2013)
CrossRef ADS Google scholar
[47]
H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)
CrossRef ADS Google scholar
[48]
E. Stueckelberg, Quantum theory in real Hilbert space, Helvetica Physica Acta 33, 727 (1960)
[49]
L. Hardy and W. K. Wootters, Limited holism and real-vector-space quantum theory, Found. Phys. 42(3), 454 (2012)
CrossRef ADS Google scholar
[50]
W. Wootters, Optimal information transfer and real-vector-space quantum theory, arXiv: 1301.2018, 2013
[51]
Y. N. Wang, H. D. Shi, Z. X. Xiong, L. Jing, X. J. Ren, L. Z. Mu, and H. Fan, Unified universal quantum cloning machine and fidelities, Phys. Rev. A 84(3), 034302 (2011)
CrossRef ADS Google scholar
[52]
S. Braunstein, N. Cerf, S. Iblisdir, P. van Loock, and S. Massar, Optimal cloning of coherent states with a linear amplifier and beam splitters, Phys. Rev. Lett. 86(21), 4938 (2001)
CrossRef ADS Google scholar
[53]
B. Gendra, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, and G. Chiribella, Probabilistic metrology attains macroscopic cloning of quantum clocks, Phys. Rev. Lett. 113(26), 260402 (2014)
CrossRef ADS Google scholar
[54]
B. Gendra, E. Ronco-Bonvehi, J. Calsamiglia, R. Munoz-Tapia, and E. Bagan, Quantum metrology assisted by abstention, Phys. Rev. Lett. 110(10), 100501 (2013)
CrossRef ADS Google scholar
[55]
G. M. D’Ariano, C. Macchiavello, and M. Rossi, Quantum cloning by cellular automata, Phys. Rev. A 87(3), 032337 (2013)
CrossRef ADS Google scholar
[56]
W. Fulton and J. Harris, Representation Theory: A First Course, Volume 129, Springer Science & Business Media, 1991
[57]
R. Alicki, S. Rudnicki, and S. Sadowski, Symmetry properties of product states for the system of N n-level atoms, J. Math. Phys. 29(5), 1158 (1988)
CrossRef ADS Google scholar
[58]
P.-L. Méliot, Kerov’s central limit theorem for Schur-Weyl measures of parameter 1/2, arXiv: 1009.4034, 2010
[59]
I. Marvian and R. Spekkens, A generalization of Schur-Weyl duality with applications in quantum estimation, Commun. Math. Phys. 331(2), 431 (2014)
CrossRef ADS Google scholar
[60]
A. W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, PhD thesis, Massachusetts Institute of Technology, 2005
[61]
Y. Yang, D. Ebler, and G. Chiribella, Efficient quantum compression for ensembles of identically prepared mixed states, arXiv: 1506.03542, 2015
[62]
I. L. Chuang and D. Gottesman, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)
CrossRef ADS Google scholar
[63]
M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)
CrossRef ADS Google scholar
[64]
P. Sekatski, M. Skotiniotis, and W. Dür, No-signaling bounds for quantum cloning and metrology, Phys. Rev. A 92(2), 022355 (2015)
CrossRef ADS Google scholar
[65]
M. A. Nielsen and I. L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79(2), 321 (1997)
CrossRef ADS Google scholar
[66]
T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91(21), 217905 (2003)
CrossRef ADS Google scholar
[67]
A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982
[68]
V. Bužek, R. Derka, and S. Massar, Optimal quantum clocks, Phys. Rev. Lett. 82(10), 2207 (1999)
CrossRef ADS Google scholar
[69]
D. Berry and H. M. Wiseman, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett. 85(24), 5098 (2000)
CrossRef ADS Google scholar
[70]
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Memory effects in quantum channel discrimination, Phys. Rev. Lett. 101(18), 180501 (2008)
CrossRef ADS Google scholar
[71]
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
CrossRef ADS Google scholar
[72]
B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nat. Phys. 7(5), 406 (2011)
CrossRef ADS Google scholar
[73]
R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012)
CrossRef ADS Google scholar
[74]
R. Chaves, J. B. Brask, M. Markiewicz, J. Kołodyński, and A. Acín, Noisy metrology beyond the standard quantum limit, Phys. Rev. Lett. 111(12), 120401 (2013)
CrossRef ADS Google scholar
[75]
R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)
CrossRef ADS Google scholar
[76]
W. Kumagai and M. Hayashi, A new family of probability distributions and asymptotics of classical and locc conversions, arXiv: 1306.4166, 2013
[77]
M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89(5), 057902 (2002)
CrossRef ADS Google scholar
[78]
J. Gea-Banacloche and M. Ozawa, Constraints for quantum logic arising from conservation laws and field uctuations, J. Opt. B 7(10), S326 (2005)
CrossRef ADS Google scholar
[79]
M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry, New J. Phys. 15(1), 013057 (2013)
CrossRef ADS Google scholar
[80]
I. Marvian and R. Spekkens, The theory of manipulations of pure state asymmetry (I): Basic tools, equivalence classes and single copy transformations, New J. Phys. 15(3), 033001 (2013)
CrossRef ADS Google scholar
[81]
I. Marvian and R. W. Spekkens, Extending Noethers theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5(3821) (2014)

RIGHTS & PERMISSIONS

2016 The Author(s). This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(400 KB)

Accesses

Citations

Detail

Sections
Recommended

/