Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

Zhao Deng (赵登), R. E. Waltz, Xiaogang Wang (王晓钢)

PDF(1220 KB)
PDF(1220 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (5) : 115203. DOI: 10.1007/s11467-016-0555-8
REVIEW ARTICLE
REVIEW ARTICLE

Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

Author information +
History +

Abstract

Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/F can approach 1.

This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy.

By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low-Ω∗ values with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E×B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω∗ ∼10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω∗≥50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the “L-mode near-edge short-fall” phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.

Keywords

turbulence / cyclokinetics / gyrokinetics / drift waves / ion cyclotron modes

Cite this article

Download citation ▾
Zhao Deng (赵登), R. E. Waltz, Xiaogang Wang (王晓钢). Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas. Front. Phys., 2016, 11(5): 115203 https://doi.org/10.1007/s11467-016-0555-8

References

[1]
M. N. Rosenbluth and A. N. Kaufman, Plasma diffusion in a magnetic field, Phys. Rev. 109(1), 1 (1958)
CrossRef ADS Google scholar
[2]
D. Pfirsch and A. Schluter, Max Planck Institute Report MPI/PA/7/62 (unpublished), 1962
[3]
H. W. Hendel, T. K. Chu, and P. A. Politzer, Collisional drift waves — Identification, stabilization, and enhanced plasma transport, Phys. Fluids 11(11), 2426 (1968)
CrossRef ADS Google scholar
[4]
S. C. Prager, A. K. Sen, and T. C. Marshall, Dissipative trapped-electron instability in cylindrical geometry, Phys. Rev. Lett. 33(12), 692 (1974)
CrossRef ADS Google scholar
[5]
J. Slough, G. A. Navratil, and A. K. Sen, Production and observation of the dissipative trapped-ion instability, Phys. Rev. Lett. 47(15), 1057 (1981)
CrossRef ADS Google scholar
[6]
R. Scarmozzino, A. K. Sen, and G. A. Navratil, Production and identification of a collisionless, curvature-driven, trapped-particle instability, Phys. Rev. Lett. 57(14), 1729 (1986)
CrossRef ADS Google scholar
[7]
A. K. Sen, J. Chen, and M. Mauel, Production and identification of the ion-temperature-gradient instability, Phys. Rev. Lett. 66(4), 429 (1991)
CrossRef ADS Google scholar
[8]
E. Mazzucato, Small-scale density fluctuations in the adiabatic toroidal compressor, Phys. Rev. Lett. 36(14), 792 (1976)
CrossRef ADS Google scholar
[9]
C. M. Surko and R. E. Slusher, Study of the density fluctuations in the adiabatic toroidal compressor scattering tokamak using CO2 laser, Phys. Rev. Lett. 37(26), 1747 (1976)
CrossRef ADS Google scholar
[10]
R. E. Slusher and C. M. Surko, Study of density fluctuations in the absorption of oxygen on silicon, Phys. Rev. Lett. 40(6), 400 (1978)
CrossRef ADS Google scholar
[11]
W. Horton, Spectral distribution of drift-wave fluctuations in Tokamaks, Phys. Rev. Lett. 37(19), 1269 (1976)
CrossRef ADS Google scholar
[12]
R. V. Bravenec, K. W. Gentle, B. Richards, D. W. Ross, D. C. Sing, A. J. Wootton, D. L. Brower, N. C. Luhmann, W. A. Peebles, C. X. Yu, T. P. Crowley, J. W. Heard, R. L. Hickok, P. M. Schoch, and X. Z. Yang, Core turbulence and transport studies on the Texas Experimental Tokamak, Phys. Fluids B Plasma Phys. 4(7), 2127 (1992)
CrossRef ADS Google scholar
[13]
K. W. Gentle, R. V. Bravenec, G.Cima, H. Gasquet, G. A. Hallock, P. E. Phillips, D. W. Ross, W. L. Rowan, A. J. Wootton, T. P. Crowley, J. Heard, A. Ouroua, P. M. Schoch, and C. Watts, An experimental counter-example to the local transport paradigm, Plasma Phys. Contr. Fusion 2(6), 2292 (1995)
CrossRef ADS Google scholar
[14]
G. Cima, R. V. Bravenec, A. J. Wootton, T. D. Rempel, R. F. Gandy, C. Watts, and M.Kwon, Core temperature fluctuations and related heat transport in the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 2(3), 720 (1995)
CrossRef ADS Google scholar
[15]
C. Watts, R. F. Gandy, G. Cima, R. V. Bravenec, D. W. Ross, A. J. Wootton, A. Ouroua, J. W. Heard, T. P. Crowley, P. M. Schoch, D. L. Brower, Y. Jiang, B. Deng, C. W. Domier, and N. C. Luhmann, Poloidal asymmetry and gradient drive in core electron density and temperature fluctuations on the Texas Experimental Tokamak-Upgrade, Phys. Plasmas 3(5), 2013 (1996)
CrossRef ADS Google scholar
[16]
B. H. Deng, D. L. Brower, G. Cima, C. W. Domier, N. C. Luhmann, and C. Watts, Mode structure of turbulent electron temperature fluctuations in the Texas Experimental Tokamak Upgrade, Phys. Plasmas 5(12), 4117 (1998)
CrossRef ADS Google scholar
[17]
A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett. 39(4), 205 (1977)
CrossRef ADS Google scholar
[18]
A. Hasegawa and K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasma, Phys. Fluids 21(1), 87 (1978)
CrossRef ADS Google scholar
[19]
A. Hasegawa and M. Wakatani, Plasma edge turbulence, Phys. Rev. Lett. 50(9), 682 (1983)
CrossRef ADS Google scholar
[20]
R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Gyro-Landau fluid models for toroidal geometry, Phys. Fluids B Plasma Phys. 4(10), 3138 (1992)
CrossRef ADS Google scholar
[21]
P. H. Rutherford and E. A. Frieman, Drift instabilities in general magnetic field configurations, Phys. Fluids 11(3), 569 (1968)
CrossRef ADS Google scholar
[22]
J. B. Taylor and R. J. Hastie, Stability of general plasma equilibria- I formal theory, Plasma Phys. 10(5), 479 (1968)
CrossRef ADS Google scholar
[23]
T. M. Antonsen and B. Lane, Kinetic equations for low frequency instabilities in inhomogeneous plasmas, Phys. Fluids 23(6), 1205 (1980)
CrossRef ADS Google scholar
[24]
P. J. Catto, W. M. Tang, and D. E. Baldwin, Generalized gyrokinetics, Plasma Phys. 23(7), 639 (1981)
CrossRef ADS Google scholar
[25]
E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids 25(3), 502 (1982)
CrossRef ADS Google scholar
[26]
C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Implementation and application of two synthetic diagnostics for validating simulations of core Tokamak turbulence, Phys. Plasmas 16(5), 052301 (2009)
CrossRef ADS Google scholar
[27]
J. Candy and R. E. Waltz, Anomalous transport scaling in the DIII-D Tokamak matched by supercomputer simulation, Phys. Rev. Lett. 91(4), 045001 (2003)
CrossRef ADS Google scholar
[28]
R. E. Waltz, Search for the missing L-mode edge transport and possible breakdown of gyro kinetics, BAPS Series II, 57(12), 105, DI3-2 (2012)
[29]
A. E. White, L. Schmitz, G. R. McKee, C. Holland, W. A. Peebles, T. A. Carter, M. W. Shafer, M. E. Austin, K. H. Burrell, J.Candy, J. C. DeBoo, E. J. Doyle, M. A. Makowski, R. Prater, T. L. Rhodes, G. M. Staebler, G. R. Tynan, R. E. Waltz, and G. Wang, Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations, Phys. Plasmas 15(5), 056116 (2008)
CrossRef ADS Google scholar
[30]
T. Rhodes, C. Holland, S. Smith, A. White, K. Burrell, J. Candy, J. DeBoo, E. Doyle, J. Hillesheim, J. Kinsey, G. McKee, D. Mikkelsen, W. Peebles, C. Petty, R. Prater, S. Parker, Y. Chen, L. Schmitz, G. Staebler, R. E. Waltz, G. Wang, Z. Yan, and L. Zeng, L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D Tokamak, Nucl. Fusion 51(6), 063022 (2011)
CrossRef ADS Google scholar
[31]
R. E. Waltz and D.Zhao, Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics, Phys. Plasmas 20(1), 012507 (2013)
CrossRef ADS Google scholar
[32]
D. Zhao and R. E. Waltz, Numerical methods for nonlinear simulations of cyclokinetics illustrating the breakdown of gyrokinetics at high turbulence levels, Comput. Phys. Commun. 195, 23 (2015)
CrossRef ADS Google scholar
[33]
R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Addison-Wesley, 1992
[34]
W. E. Drummond and M. N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma, Phys. Fluids 5(12), 1507 (1962)
CrossRef ADS Google scholar
[35]
N. A. Krall and M. N. Rosenbluth, Trapping instabilities in a slightly inhomogeneous plasma, Phys. Fluids 5(11), 1435 (1962)
CrossRef ADS Google scholar
[36]
N. A. Krall and M. N. Rosenbluth, Universal instability in complex field geometries, Phys. Fluids 8(8), 1488 (1965)
CrossRef ADS Google scholar
[37]
T. F. R. Group, J.Adam, J. F. Bonnal, A. Breson, , Ion-cyclotron instability in the TFR Tokamak, Phys. Rev. Lett. 41(2), 113 (1978)
CrossRef ADS Google scholar
[38]
R. E. Waltz and R. R. Dominguez, Ion cyclotron modes in Tokamaks, Phys. Fluids 24(8), 1575 (1981)
CrossRef ADS Google scholar
[39]
D. Zhao and R. E. Waltz, Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulationsa), Phys. Plasmas 22(5), 056101 (2015)
CrossRef ADS Google scholar
[40]
S. I. Braginskii, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultants Bureau, New York, 1965, Vol. I, 205
[41]
S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Cases, Cambridge University Press, 1953
[42]
A. Sommerfeld, Thermodynamics and Statistical Mechanics, Academic Press, New York, 1949
[43]
L. D. Landau and E. M. Lifshits, Fluid Mechanics, Addison-Wesley, Reading, Mass, 1959
[44]
B. A. Trubnikov, Reviews of Plasma Physics, edited by M. A. Leontovich, Consultans Bureau, New York, 1965, Vol. I, 105
[45]
F. L. Hinton and R. E. Waltz, Gyrokinetic turbulent heating, Phys. Plasmas 13(10), 102301 (2006)
CrossRef ADS Google scholar
[46]
I. S. Gradshteyn and I. M. Ryzhk, Tables of Integrals, Series, and Products, Academic, 1965
[47]
J. Candy and R. E. Waltz, Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations, Phys. Plasmas 13(3), 032310 (2006)
CrossRef ADS Google scholar
[48]
J. Candy and R. E. Waltz, An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys. 186(2), 545 (2003)
CrossRef ADS Google scholar
[49]
W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Electron temperature gradient turbulence, Phys. Rev. Lett. 85(26), 5579 (2000)
CrossRef ADS Google scholar
[50]
M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun. 88(2-3), 128 (1995)
CrossRef ADS Google scholar
[51]
Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Size scaling of turbulent transport in magnetically confined plasmas, Phys. Rev. Lett. 88(19), 195004 (2002)
CrossRef ADS Google scholar
[52]
R. E. Waltz, J. Candy, and C. C. Petty, Projected profile similarity in gyrokinetic simulations of Bohm and gyro-Bohm scaled DIII-D L and H modes, Phys. Plasmas 13(7), 072304 (2006)
CrossRef ADS Google scholar
[53]
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(2), 130 (1963)
CrossRef ADS Google scholar
[54]
A. E. White, N. T. Howard, M. Greenwald, M. L. Reinke, C. Sung, S. Baek, M. Barnes, J. Candy, A. Dominguez, D. Ernst, C. Gao, A. E. Hubbard, J. W. Hughes, Y. Lin, D. Mikkelsen, F. Parra, M. Porkolab, J. E. Rice, J. Walk, S. J. Wukitch, and A. C.M. Team, Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations, Phys. Plasmas 20(5), 056106 (2013)
CrossRef ADS Google scholar
[55]
N. T. Howard, A. E. White, M. Reinke, M. Greenwald, C. Holland, J. Candy, and J. Walk, Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas, Nucl. Fusion 53(12), 123011 (2013)
CrossRef ADS Google scholar
[56]
N. T. Howard, A. E. White, M. Greenwald, M. L. Reinke, J. Walk, C. Holland, J. Candy, and T. Gorler, Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas, Phys. Plasmas 20(3), 032510 (2013)
CrossRef ADS Google scholar
[57]
N. T. Howard, C. Holland, A. E. White, M. Greenwald, and J.Candy, Synergistic cross-scale coupling of turbulence in a Tokamak plasma, Phys. Plasmas 21(11), 112510 (2014)
CrossRef ADS Google scholar
[58]
D. Told, F. Jenko, T. Gorler, F. J. Casson, and E. Fable, Characterizing turbulent transport in ASDEX Upgrade L-mode plasmas via nonlinear gyrokinetic simulations, Phys. Plasmas 20(12), 122312 (2013)
CrossRef ADS Google scholar
[59]
J. Chowdhury, W. Wan, Y. Chen, S. E. Parker, R. J. Groebner, C. Holland, and N. T. Howard, Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic df particle-in-cell simulation, Phys. Plasmas 21(11), 112503 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1220 KB)

Accesses

Citations

Detail

Sections
Recommended

/