Impurity scattering effect in Pd-doped superconductor SrPt3P
Kang-Kang Hu, Bo Gao, Qiu-Cheng Ji, Yong-Hui Ma, Hui Zhang, Gang Mu, Fu-Qiang Huang, Chuan-Bing Cai, Xiao-Ming Xie
Impurity scattering effect in Pd-doped superconductor SrPt3P
We present a systematic study of the impurity scattering effect induced by Pd dopants in the superconductor SrPt3P. Using a solid-state reaction method, we fabricated the Pd-doped superconductor Sr(Pt1−xPdx)3P.We found that the residual resistivity ρ0 increases quickly with Pd doping, whereas the residual resistance ratio (RRR) displays a dramatic reduction. In addition, both the nonlinear field-dependent behavior of the Hall resistivity ρxy and the strong temperature dependence of the Hall coefficient RH at low temperature are suppressed by Pd doping. All the experimental results can be explained by an increase in scattering by impurities induced by doping. Our results suggest that the Pt position is very crucial to the carrier conduction in the present system.
impurity scattering effect / SrPt3P / superconductors
[1] |
J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B: Condens. Matter 64(2), 189 (1986)
CrossRef
ADS
Google scholar
|
[2] |
Y. Kamihara, T. Watanabe, M. <?Pub Caret1?>Hirano, and H. Hosono, Iron-based layered superconductor La[O1- xFx]FeAs (x= 0.05-0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef
ADS
Google scholar
|
[3] |
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
CrossRef
ADS
Google scholar
|
[4] |
G. Mu, V. Sandu, W. Li, and B. Shen, Exotic superconductivity in correlated electron systems, Adv. Condens. Matter Phys. 2015, 180195 (2015) http://dx.doi.org/10.1155/2015/180195
CrossRef
ADS
Google scholar
|
[5] |
T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, and H. Takagi, Strong coupling superconductivity at 8.4 K in an antiperovskite phosphide SrPt3P, Phys. Rev. Lett. 108(23), 237001 (2012)
CrossRef
ADS
Google scholar
|
[6] |
E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si, Phys. Rev. Lett. 92(2), 027003 (2004)
CrossRef
ADS
Google scholar
|
[7] |
C. J. Kang, K. H. Ahn, K. W. Lee, and B. I. Min, Electron and phonon band-structure calculations for the antipolar SrPt3P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons, J. Phys. Soc. Jpn. 82(5), 053703 (2013)
CrossRef
ADS
Google scholar
|
[8] |
H. Chen, X. F. Xu, C. Cao, and J. H. Dai, First-principles calculations of the electronic and phonon properties of APt3P (A= Ca, Sr, and La): Evidence for a charge-density-wave instability and a soft phonon, Phys. Rev. B 86(12), 125116 (2012)
CrossRef
ADS
Google scholar
|
[9] |
R. Szczȩśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
CrossRef
ADS
Google scholar
|
[10] |
I. A. Nekrasov and M. V. Sadovskii, Electronic structure of new multiple band Pt-pnictide superconductors APt3P, JETP Lett. 96(4), 227 (2012)
CrossRef
ADS
Google scholar
|
[11] |
B. I. Jawdat, B. Lv, X. Zhu, Y. Xue, and C. Chu, High-pressure and doping studies of the superconducting antiperovskite SrPt3P, Phys. Rev. B 91(9), 094514 (2015)
CrossRef
ADS
Google scholar
|
[12] |
D. A. Zocco, S. Krannich, R. Heid, K. P. Bohnen, T. Wolf, T. Forrest, A. Bossak, and F. Weber, Lattice dynamical properties of superconducting SrPt3P studied via inelastic X-ray scattering and density functional perturbation theory, arXiv: 1510.02012 (2015)
|
[13] |
T. Shiroka, M. Pikulski, N. D. Zhigadlo, B. Batlogg, J. Mesot, and H. R. Ott, Pairing of weakly correlated electrons in the platinum-based centrosymmetric superconductor SrPt3P, Phys. Rev. B 91(24), 245143 (2015)
CrossRef
ADS
Google scholar
|
[14] |
K. K. Hu, B. Gao, Q. C. Ji, Y. H. Ma, W. Li, X. G. Xu, H. Zhang, G. Mu, F. Q. Huang, C. B. Cai, X. M. Xie, and M. H. Jiang, The effects of electron correlation and spin-orbit coupling in the isovalent Pd-doped superconductor SrPt3P, arXiv: 1601.02782 (2015)
|
[15] |
C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)
CrossRef
ADS
Google scholar
|
[16] |
J. Singleton, Band Theory and Electronic Properties of Solids, Oxford: Oxford University Press (2001)
|
[17] |
G. Mu, B. Zeng, X. Zhu, F. Han, P. Cheng, B. Shen, and H. H. Wen, Synthesis, structural, and transport properties of the hole-doped superconductor Pr1-xSrxFeAsO, Phys. Rev. B 79(10), 104501 (2009)
CrossRef
ADS
Google scholar
|
[18] |
G. Mu, B. Zeng, P. Cheng, X. Zhu, F. Han, B. Shen, and H. H. Wen, Superconductivity at 15.6 K in calcium-doped Tb1-xCaxFeAsO: The structure requirement for achieving superconductivity in the hole-doped 1111 phase, Europhys. Lett. 89(2), 27002 (2010)
CrossRef
ADS
Google scholar
|
[19] |
H. Yang, Y. Liu, C. Zhuang, J. Shi, Y. Yao, S. Massidda, M. Monni, Y. Jia, X. Xi, Q. Li, Z. K. Liu, Q. Feng, and H. H. Wen, Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements, Phys. Rev. Lett. 101(6), 067001 (2008)
CrossRef
ADS
Google scholar
|
[20] |
G. Mu, H. Yang, and H. H. Wen, Multiband effect in the noncentrosymmetric superconductors Mg12−δIr19B16 revealed by Hall effect and magnetoresistance measurements, Phys. Rev. B 82(5), 052501 (2010)
CrossRef
ADS
Google scholar
|
[21] |
L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H. H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2,Phys. Rev. B 80, 140508(R) (2009)
|
/
〈 | 〉 |