Impurity scattering effect in Pd-doped superconductor SrPt3P

Kang-Kang Hu, Bo Gao, Qiu-Cheng Ji, Yong-Hui Ma, Hui Zhang, Gang Mu, Fu-Qiang Huang, Chuan-Bing Cai, Xiao-Ming Xie

PDF(233 KB)
PDF(233 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 117403. DOI: 10.1007/s11467-016-0554-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Impurity scattering effect in Pd-doped superconductor SrPt3P

Author information +
History +

Abstract

We present a systematic study of the impurity scattering effect induced by Pd dopants in the superconductor SrPt3P. Using a solid-state reaction method, we fabricated the Pd-doped superconductor Sr(Pt1−xPdx)3P.We found that the residual resistivity ρ0 increases quickly with Pd doping, whereas the residual resistance ratio (RRR) displays a dramatic reduction. In addition, both the nonlinear field-dependent behavior of the Hall resistivity ρxy and the strong temperature dependence of the Hall coefficient RH at low temperature are suppressed by Pd doping. All the experimental results can be explained by an increase in scattering by impurities induced by doping. Our results suggest that the Pt position is very crucial to the carrier conduction in the present system.

Keywords

impurity scattering effect / SrPt3P / superconductors

Cite this article

Download citation ▾
Kang-Kang Hu, Bo Gao, Qiu-Cheng Ji, Yong-Hui Ma, Hui Zhang, Gang Mu, Fu-Qiang Huang, Chuan-Bing Cai, Xiao-Ming Xie. Impurity scattering effect in Pd-doped superconductor SrPt3P. Front. Phys., 2016, 11(4): 117403 https://doi.org/10.1007/s11467-016-0554-9

References

[1]
J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B: Condens. Matter 64(2), 189 (1986)
CrossRef ADS Google scholar
[2]
Y. Kamihara, T. Watanabe, M. <?Pub Caret1?>Hirano, and H. Hosono, Iron-based layered superconductor La[O1- xFx]FeAs (x= 0.05-0.12) with Tc= 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
CrossRef ADS Google scholar
[3]
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
CrossRef ADS Google scholar
[4]
G. Mu, V. Sandu, W. Li, and B. Shen, Exotic superconductivity in correlated electron systems, Adv. Condens. Matter Phys. 2015, 180195 (2015) http://dx.doi.org/10.1155/2015/180195
CrossRef ADS Google scholar
[5]
T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, and H. Takagi, Strong coupling superconductivity at 8.4 K in an antiperovskite phosphide SrPt3P, Phys. Rev. Lett. 108(23), 237001 (2012)
CrossRef ADS Google scholar
[6]
E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si, Phys. Rev. Lett. 92(2), 027003 (2004)
CrossRef ADS Google scholar
[7]
C. J. Kang, K. H. Ahn, K. W. Lee, and B. I. Min, Electron and phonon band-structure calculations for the antipolar SrPt3P antiperovskite superconductor: Evidence of low-energy two-dimensional phonons, J. Phys. Soc. Jpn. 82(5), 053703 (2013)
CrossRef ADS Google scholar
[8]
H. Chen, X. F. Xu, C. Cao, and J. H. Dai, First-principles calculations of the electronic and phonon properties of APt3P (A= Ca, Sr, and La): Evidence for a charge-density-wave instability and a soft phonon, Phys. Rev. B 86(12), 125116 (2012)
CrossRef ADS Google scholar
[9]
R. Szczȩśniak, A. P. Durajski, and L. Herok, Theoretical description of the SrPt3P superconductor in the strong-coupling limit, Phys. Scr. 89(12), 125701 (2014)
CrossRef ADS Google scholar
[10]
I. A. Nekrasov and M. V. Sadovskii, Electronic structure of new multiple band Pt-pnictide superconductors APt3P, JETP Lett. 96(4), 227 (2012)
CrossRef ADS Google scholar
[11]
B. I. Jawdat, B. Lv, X. Zhu, Y. Xue, and C. Chu, High-pressure and doping studies of the superconducting antiperovskite SrPt3P, Phys. Rev. B 91(9), 094514 (2015)
CrossRef ADS Google scholar
[12]
D. A. Zocco, S. Krannich, R. Heid, K. P. Bohnen, T. Wolf, T. Forrest, A. Bossak, and F. Weber, Lattice dynamical properties of superconducting SrPt3P studied via inelastic X-ray scattering and density functional perturbation theory, arXiv: 1510.02012 (2015)
[13]
T. Shiroka, M. Pikulski, N. D. Zhigadlo, B. Batlogg, J. Mesot, and H. R. Ott, Pairing of weakly correlated electrons in the platinum-based centrosymmetric superconductor SrPt3P, Phys. Rev. B 91(24), 245143 (2015)
CrossRef ADS Google scholar
[14]
K. K. Hu, B. Gao, Q. C. Ji, Y. H. Ma, W. Li, X. G. Xu, H. Zhang, G. Mu, F. Q. Huang, C. B. Cai, X. M. Xie, and M. H. Jiang, The effects of electron correlation and spin-orbit coupling in the isovalent Pd-doped superconductor SrPt3P, arXiv: 1601.02782 (2015)
[15]
C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32(4), 838 (1999)
CrossRef ADS Google scholar
[16]
J. Singleton, Band Theory and Electronic Properties of Solids, Oxford: Oxford University Press (2001)
[17]
G. Mu, B. Zeng, X. Zhu, F. Han, P. Cheng, B. Shen, and H. H. Wen, Synthesis, structural, and transport properties of the hole-doped superconductor Pr1-xSrxFeAsO, Phys. Rev. B 79(10), 104501 (2009)
CrossRef ADS Google scholar
[18]
G. Mu, B. Zeng, P. Cheng, X. Zhu, F. Han, B. Shen, and H. H. Wen, Superconductivity at 15.6 K in calcium-doped Tb1-xCaxFeAsO: The structure requirement for achieving superconductivity in the hole-doped 1111 phase, Europhys. Lett. 89(2), 27002 (2010)
CrossRef ADS Google scholar
[19]
H. Yang, Y. Liu, C. Zhuang, J. Shi, Y. Yao, S. Massidda, M. Monni, Y. Jia, X. Xi, Q. Li, Z. K. Liu, Q. Feng, and H. H. Wen, Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements, Phys. Rev. Lett. 101(6), 067001 (2008)
CrossRef ADS Google scholar
[20]
G. Mu, H. Yang, and H. H. Wen, Multiband effect in the noncentrosymmetric superconductors Mg12−δIr19B16 revealed by Hall effect and magnetoresistance measurements, Phys. Rev. B 82(5), 052501 (2010)
CrossRef ADS Google scholar
[21]
L. Fang, H. Luo, P. Cheng, Z. Wang, Y. Jia, G. Mu, B. Shen, I. I. Mazin, L. Shan, C. Ren, and H. H. Wen, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2,Phys. Rev. B 80, 140508(R) (2009)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(233 KB)

Accesses

Citations

Detail

Sections
Recommended

/