Multiple teleportation via partially entangled GHZ state
Pei-Ying Xiong, Xu-Tao Yu, Hai-Tao Zhan, Zai-Chen Zhang
Multiple teleportation via partially entangled GHZ state
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.
auxiliary particle / partially entangled GHZ state / multiple teleportation protocol
[1] |
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein˗Podolsky˗Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[2] |
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef
ADS
Google scholar
|
[3] |
D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)
CrossRef
ADS
Google scholar
|
[4] |
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)
CrossRef
ADS
Google scholar
|
[5] |
M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)
CrossRef
ADS
Google scholar
|
[6] |
P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84(15), 3482 (2000)
CrossRef
ADS
Google scholar
|
[7] |
S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)
CrossRef
ADS
Google scholar
|
[8] |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein˗Podolsky˗ Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[9] |
L. Marinatto and T. Weber, Which kind of two-particle states can be teleported through a three-particle quantum channel, Found. Phys. Lett. 13(2), 119 (2000)
CrossRef
ADS
Google scholar
|
[10] |
H. Lu and G. C. Guo, Teleportation of a two-particle entangled state via entanglement swapping, Phys. Rev. Lett. 276(5-6), 209 (2000)
CrossRef
ADS
Google scholar
|
[11] |
M. Cao and S. Q. Zhu, Probabilistic teleportation of n particle state via n pairs of entangled particles, Commun. Theor. Phys. 43(1), 69 (2005)
CrossRef
ADS
Google scholar
|
[12] |
F. G. Deng, C. Y. Li, Y. S. Li, H.Y. Zhou, and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72(2), 022338 (2005)
CrossRef
ADS
Google scholar
|
[13] |
T. Gao, Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states, Commun. Theor. Phys. 42(2), 223 (2004)
CrossRef
ADS
Google scholar
|
[14] |
P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)
CrossRef
ADS
Google scholar
|
[15] |
Y. Chang, S. B. Zhang, L. L. Yan, and J. Li, Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad, Chin. Sci. Bull. 59(23), 2835 (2014)
CrossRef
ADS
Google scholar
|
[16] |
X. F. Zou and D. W. Qiu, Three-step semiquantum secure direct communication protocol, Sci. China. Phys. Mech. 57(9), 1696 (2014)
CrossRef
ADS
Google scholar
|
[17] |
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef
ADS
Google scholar
|
[18] |
C. Perumangatt, A. Abdul Rahim, G. R. Salla, S. Prabhakar, G. K. Samanta, G. Paul, and R. P. Singh, Three-particle hyper-entanglement: Teleportation and quantum key distribution, Quantum Inform. Process. 14(10), 3813 (2015)
CrossRef
ADS
Google scholar
|
[19] |
S. Sazim, S. Adhikari, S. Banerjee, and T. Pramanik, Quantification of entanglement of teleportation in arbitrary dimensions, Quantum Inform. Process. 13(4), 863 (2014)
CrossRef
ADS
Google scholar
|
[20] |
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef
ADS
Google scholar
|
[21] |
Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5, 13453 (2015)
CrossRef
ADS
Google scholar
|
[22] |
C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
CrossRef
ADS
Google scholar
|
[23] |
X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eight-photon entanglement, Nat. Photonics 6(4), 225 (2012)
CrossRef
ADS
Google scholar
|
[24] |
Q. Zhang, A. Goebel, C. Wagenknecht, Y. A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, Experimental quantum teleportation of a two-qubit composite System, Nat. Phys. 2(10), 678 (2006)
CrossRef
ADS
Google scholar
|
[25] |
X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)
CrossRef
ADS
Google scholar
|
[26] |
J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)
CrossRef
ADS
Google scholar
|
[27] |
J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, Experimental realization of freely propagating teleported qubits, Nature 421(6924), 721 (2003)
CrossRef
ADS
Google scholar
|
[28] |
M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)
CrossRef
ADS
Google scholar
|
[29] |
X. L. Su, S. H. Hao, Y. P. Zhao, X. W. Deng, X. J. Jia, C. D. Xie, and K. C. Peng, Demonstration of eight-partite two-diamond shape cluster state for continuous variables, Front. Phys. 8(1), 20 (2013)
CrossRef
ADS
Google scholar
|
[30] |
F. L. Yan and T. Yan, Probabilistic teleportation via a non-maximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)
CrossRef
ADS
Google scholar
|
[31] |
Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states, Eur. Phys. J. D 42(2), 333 (2007)
CrossRef
ADS
Google scholar
|
[32] |
D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China. Ser. G 51(10), 1523 (2008)
CrossRef
ADS
Google scholar
|
[33] |
T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
CrossRef
ADS
Google scholar
|
[34] |
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
CrossRef
ADS
Google scholar
|
[35] |
B. Gu, Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics, J. Opt. Soc. Amer. B 29(7), 1685 (2012)
CrossRef
ADS
Google scholar
|
[36] |
X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)
CrossRef
ADS
Google scholar
|
[37] |
J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
CrossRef
ADS
Google scholar
|
[38] |
J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423(6938), 417 (2003)
CrossRef
ADS
Google scholar
|
[39] |
S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inform. Process. 12(12), 3633 (2013)
CrossRef
ADS
Google scholar
|
[40] |
L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inform. Process. 12(2), 1307 (2013)
CrossRef
ADS
Google scholar
|
[41] |
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3),032318 (2010)
CrossRef
ADS
Google scholar
|
[42] |
X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)
CrossRef
ADS
Google scholar
|
[43] |
K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
CrossRef
ADS
Google scholar
|
[44] |
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
CrossRef
ADS
Google scholar
|
[45] |
L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)
CrossRef
ADS
Google scholar
|
[46] |
R. Fortes and G. Rigolin, Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states, Ann. Phys. 336(9), 517 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |