Multiple teleportation via partially entangled GHZ state

Pei-Ying Xiong, Xu-Tao Yu, Hai-Tao Zhan, Zai-Chen Zhang

PDF(281 KB)
PDF(281 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110303. DOI: 10.1007/s11467-016-0553-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiple teleportation via partially entangled GHZ state

Author information +
History +

Abstract

Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

Keywords

auxiliary particle / partially entangled GHZ state / multiple teleportation protocol

Cite this article

Download citation ▾
Pei-Ying Xiong, Xu-Tao Yu, Hai-Tao Zhan, Zai-Chen Zhang. Multiple teleportation via partially entangled GHZ state. Front. Phys., 2016, 11(4): 110303 https://doi.org/10.1007/s11467-016-0553-x

References

[1]
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein˗Podolsky˗Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[2]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef ADS Google scholar
[3]
D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)
CrossRef ADS Google scholar
[4]
J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)
CrossRef ADS Google scholar
[5]
M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)
CrossRef ADS Google scholar
[6]
P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84(15), 3482 (2000)
CrossRef ADS Google scholar
[7]
S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)
CrossRef ADS Google scholar
[8]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein˗Podolsky˗ Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef ADS Google scholar
[9]
L. Marinatto and T. Weber, Which kind of two-particle states can be teleported through a three-particle quantum channel, Found. Phys. Lett. 13(2), 119 (2000)
CrossRef ADS Google scholar
[10]
H. Lu and G. C. Guo, Teleportation of a two-particle entangled state via entanglement swapping, Phys. Rev. Lett. 276(5-6), 209 (2000)
CrossRef ADS Google scholar
[11]
M. Cao and S. Q. Zhu, Probabilistic teleportation of n particle state via n pairs of entangled particles, Commun. Theor. Phys. 43(1), 69 (2005)
CrossRef ADS Google scholar
[12]
F. G. Deng, C. Y. Li, Y. S. Li, H.Y. Zhou, and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72(2), 022338 (2005)
CrossRef ADS Google scholar
[13]
T. Gao, Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states, Commun. Theor. Phys. 42(2), 223 (2004)
CrossRef ADS Google scholar
[14]
P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)
CrossRef ADS Google scholar
[15]
Y. Chang, S. B. Zhang, L. L. Yan, and J. Li, Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad, Chin. Sci. Bull. 59(23), 2835 (2014)
CrossRef ADS Google scholar
[16]
X. F. Zou and D. W. Qiu, Three-step semiquantum secure direct communication protocol, Sci. China. Phys. Mech. 57(9), 1696 (2014)
CrossRef ADS Google scholar
[17]
L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)
CrossRef ADS Google scholar
[18]
C. Perumangatt, A. Abdul Rahim, G. R. Salla, S. Prabhakar, G. K. Samanta, G. Paul, and R. P. Singh, Three-particle hyper-entanglement: Teleportation and quantum key distribution, Quantum Inform. Process. 14(10), 3813 (2015)
CrossRef ADS Google scholar
[19]
S. Sazim, S. Adhikari, S. Banerjee, and T. Pramanik, Quantification of entanglement of teleportation in arbitrary dimensions, Quantum Inform. Process. 13(4), 863 (2014)
CrossRef ADS Google scholar
[20]
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef ADS Google scholar
[21]
Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5, 13453 (2015)
CrossRef ADS Google scholar
[22]
C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
CrossRef ADS Google scholar
[23]
X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eight-photon entanglement, Nat. Photonics 6(4), 225 (2012)
CrossRef ADS Google scholar
[24]
Q. Zhang, A. Goebel, C. Wagenknecht, Y. A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, Experimental quantum teleportation of a two-qubit composite System, Nat. Phys. 2(10), 678 (2006)
CrossRef ADS Google scholar
[25]
X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)
CrossRef ADS Google scholar
[26]
J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)
CrossRef ADS Google scholar
[27]
J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, Experimental realization of freely propagating teleported qubits, Nature 421(6924), 721 (2003)
CrossRef ADS Google scholar
[28]
M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)
CrossRef ADS Google scholar
[29]
X. L. Su, S. H. Hao, Y. P. Zhao, X. W. Deng, X. J. Jia, C. D. Xie, and K. C. Peng, Demonstration of eight-partite two-diamond shape cluster state for continuous variables, Front. Phys. 8(1), 20 (2013)
CrossRef ADS Google scholar
[30]
F. L. Yan and T. Yan, Probabilistic teleportation via a non-maximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)
CrossRef ADS Google scholar
[31]
Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states, Eur. Phys. J. D 42(2), 333 (2007)
CrossRef ADS Google scholar
[32]
D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China. Ser. G 51(10), 1523 (2008)
CrossRef ADS Google scholar
[33]
T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
CrossRef ADS Google scholar
[34]
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
CrossRef ADS Google scholar
[35]
B. Gu, Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics, J. Opt. Soc. Amer. B 29(7), 1685 (2012)
CrossRef ADS Google scholar
[36]
X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)
CrossRef ADS Google scholar
[37]
J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
CrossRef ADS Google scholar
[38]
J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423(6938), 417 (2003)
CrossRef ADS Google scholar
[39]
S. Y. Zhao, J. Liu, L. Zhou, and Y. B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inform. Process. 12(12), 3633 (2013)
CrossRef ADS Google scholar
[40]
L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inform. Process. 12(2), 1307 (2013)
CrossRef ADS Google scholar
[41]
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3),032318 (2010)
CrossRef ADS Google scholar
[42]
X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)
CrossRef ADS Google scholar
[43]
K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
CrossRef ADS Google scholar
[44]
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
CrossRef ADS Google scholar
[45]
L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)
CrossRef ADS Google scholar
[46]
R. Fortes and G. Rigolin, Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states, Ann. Phys. 336(9), 517 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(281 KB)

Accesses

Citations

Detail

Sections
Recommended

/