Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

Dazhi Xu, Jianshu Cao

PDF(611 KB)
PDF(611 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110308-110308. DOI: 10.1007/s11467-016-0540-2
REVIEW ARTICLE
REVIEW ARTICLE

Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

Author information +
History +

Abstract

The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi’s golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

Keywords

polaron transformation / strong coupling / quantum transport / non-equilibrium steady state

Cite this article

Download citation ▾
Dazhi Xu, Jianshu Cao. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach. Front. Phys., 2016, 11(4): 110308‒110308 https://doi.org/10.1007/s11467-016-0540-2

References

[1]
A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965)
CrossRef ADS Google scholar
[2]
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
CrossRef ADS Google scholar
[3]
H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
[4]
J. Cao, A phase-space study of Bloch–Redfield theory, J. Chem. Phys. 107(8), 3204 (1997)
CrossRef ADS Google scholar
[5]
S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials, Phys. Rev. Lett. 89(18), 186802 (2002)
CrossRef ADS Google scholar
[6]
D. Kim, S. Okahara, M. Nakayama, and Y. Shim, Experimental verification of Förster energy transfer between semiconductor quantum dots, Phys. Rev. B 78(15), 153301 (2008)
CrossRef ADS Google scholar
[7]
S. I. E. Vulto, M. A. de Baat, R. J. W. Louwe, H. P. Permentier, T. Neef, M. Miller, H. van Amerongen, and T. J. Aartsma, Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K, J. Phys. Chem. B 102(47), 9577 (1998)
CrossRef ADS Google scholar
[8]
T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature 434(7033), 625 (2005)
CrossRef ADS Google scholar
[9]
G. S. Engel, T. R. Calhoun, E. L. Read, T. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446(7137), 782 (2007)
CrossRef ADS Google scholar
[10]
J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, Efficient energy transfer in light-harvesting systems (I): optimal temperature, reorganization energy and spatial–temporal correlations, New J. Phys. 12(10), 105012 (2010)
CrossRef ADS Google scholar
[11]
Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)
CrossRef ADS Google scholar
[12]
R. X. Xu and Y. J. Yan, Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach, Phys. Rev. E 75(3), 031107 (2007)
CrossRef ADS Google scholar
[13]
N. Makri and D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density matrices (I): Theory, J. Chem. Phys. 102(11), 4600 (1995)
CrossRef ADS Google scholar
[14]
J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Efficient simulation of strong system-environment interactions, Phys. Rev. Lett. 105(5), 050404 (2010)
CrossRef ADS Google scholar
[15]
S. Tornow, R. Bulla, F. B. Anders, and A. Nitzan, Dissipative two-electron transfer: A numerical renormalization group study, Phys. Rev. B 78(3), 035434 (2008)
CrossRef ADS Google scholar
[16]
H. D. Meyer, U. Manthe, and L. Cederbaum, The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett. 165(1), 73 (1990)
CrossRef ADS Google scholar
[17]
M. Thoss, H. Wang, and W. H. Miller, Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density, J. Chem. Phys. 115(7), 2991 (2001)
CrossRef ADS Google scholar
[18]
M. Moix, Y. Zhao, and J. Cao, Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems, Phys. Rev. B 85(11), 115412 (2012)
CrossRef ADS Google scholar
[19]
J. Moix, J. Ma, and J. Cao, Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems (III): Exact stochastic path integral evaluation, J. Chem. Phys. 142(9), 094108 (2015)
CrossRef ADS Google scholar
[20]
H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954)
CrossRef ADS Google scholar
[21]
T. Holstein, Studies of polaron motion, Ann. Phys. 8(3), 325 (1959)
CrossRef ADS Google scholar
[22]
R. Silbey and R. A. Harris, Variational calculation of the dynamics of a two level system interacting with a bath, J. Chem. Phys. 80(6), 2615 (1984)
CrossRef ADS Google scholar
[23]
R. A. Harris and R. Silbey, Variational calculation of the tunneling system interacting with a heat bath (II): Dynamics of an asymmetric tunneling system, J. Chem. Phys. 83(3), 1069 (1985)
CrossRef ADS Google scholar
[24]
M. Grover and R. Silbey, Exciton migration in molecular crystals, J. Chem. Phys. 54(11), 4843 (1971)
CrossRef ADS Google scholar
[25]
S. Jang, Y. C. Cheng, D. R. Reichman, and J. D. Eaves, Theory of coherent resonance energy transfer, J. Chem. Phys. 129(10), 101104 (2008)
CrossRef ADS Google scholar
[26]
A. Nazir, Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics, Phys. Rev. Lett. 103(14), 146404 (2009)
CrossRef ADS Google scholar
[27]
D. P. S. McCutcheon and A. Nazir, Quantum dot Rabi rotations beyond the weak exciton–phonon coupling regime, New J. Phys. 12(11), 113042 (2010)
CrossRef ADS Google scholar
[28]
C. K. Lee, J. M. Moix, and J. Cao, Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport, J. Chem. Phys. 142(16), 164103 (2015)
CrossRef ADS Google scholar
[29]
C. K. Lee, J. Moix, and J. Cao, Accuracy of second order perturbation theory in the polaron and variational polaron frames, J. Chem. Phys. 136(20), 204120 (2012)
CrossRef ADS Google scholar
[30]
C. K. Lee, J. Cao, and J. Gong, Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations, Phys. Rev. E 86(2), 021109 (2012)
CrossRef ADS Google scholar
[31]
H. Dong, S. Yang, X. F. Liu, and C. P. Sun, Quantum thermalization with couplings, Phys. Rev. A 76(4), 044104 (2007)
CrossRef ADS Google scholar
[32]
D. Z. Xu, S. W. Li, X. F. Liu, and C. P. Sun, Noncanonical statistics of a finite quantum system with non-negligible system-bath coupling, Phys. Rev. E 90(6), 062125 (2014)
CrossRef ADS Google scholar
[33]
C. Wang, J. Ren and J. Cao, Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling, Scientific Reports 5, 11787 (2015)
CrossRef ADS Google scholar
[34]
D. Z. Xu, C. Wang, Y. Zhao, and J. Cao, Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective, New J. Phys. 18(2), 023003 (2016)
CrossRef ADS Google scholar
[35]
A. Ishizaki and G. R. Fleming, On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer, J. Chem. Phys. 130(23), 234110 (2009)
CrossRef ADS Google scholar
[36]
L. A. Pachón and P. Brumer, Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes, J. Phys. Chem. Lett. 2, 2728 (2011), arXiv: 1203.3978
CrossRef ADS Google scholar
[37]
H. J. Carmichael, Statistical Methods in Quantum Optics, Springer, 1999
CrossRef ADS Google scholar
[38]
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59(1), 1 (1987)
CrossRef ADS Google scholar
[39]
U. Weiss, Quantum Dissipative Systems, Singapore: World Scientific, 2008
[40]
J. Cao, Effects of bath relaxation on dissipative two-state dynamics, J. Chem. Phys. 112(15), 6719 (2000)
CrossRef ADS Google scholar
[41]
A. W. Chin, J. Prior, S. F. Huelga, and M. B. Plenio, Generalized polaron ansatz for the ground state of the sub-ohmic spin-boson model: An analytic theory of the localization transition, Phys. Rev. Lett. 107(16), 160601 (2011)
CrossRef ADS Google scholar
[42]
Q. J. Tong, J. H. An, H. G. Luo, and C. H. Oh, Quantum phase transition in the delocalized regime of the spin-boson model, Phys. Rev. B 84(17), 174301 (2011)
CrossRef ADS Google scholar
[43]
D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A. Nazir, A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots, Phys. Rev. B 84(8), 081305 (2011)
CrossRef ADS Google scholar
[44]
D. Ruelle, Statistical Mechanics: Rigorous Results, New York: Benjamin, 1969
[45]
R. P. Feynman, Statistical Mechanics. A set of lectures, Longman: Addison Wesley, 1998
[46]
M. D. Girardeau and R. M. Mazo, Advances in Chemical Physics, Vol. 24, New York: Wiley, 1973
CrossRef ADS Google scholar
[47]
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics (II): Nonequilibrium Statistical Mechanics, Berlin: Springer-Verlag, 1983
[48]
A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems, Oxford: Oxford University Press, 2006
[49]
R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
CrossRef ADS Google scholar
[50]
W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75(3), 715 (2003)
CrossRef ADS Google scholar
[51]
J. P. Paz and W. H. Zurek, Quantum limit of decoherence: Environment induced superselection of energy eigenstates, Phys. Rev. Lett. 82(26), 5181 (1999)
CrossRef ADS Google scholar
[52]
D. Braun, F. Haake, and W. T. Strunz, Universality of decoherence, Phys. Rev. Lett. 86(14), 2913 (2001)
CrossRef ADS Google scholar
[53]
W. G. Wang, J. B. Gong, G. Casati, and B. Li, Entanglement-induced decoherence and energy eigenstates, Phys. Rev. A 77(1), 012108 (2008)
CrossRef ADS Google scholar
[54]
C. Gogolin, Environment-induced super selection without pointer states, Phys. Rev. E 81(5), 051127 (2010)
CrossRef ADS Google scholar
[55]
E. N. Zimanyi and R. J. Silbey, Theoretical description of quantum effects in multi-chromophoric aggregates, Philos. Trans. R. Soc. A 370(1972), 3620 (2012)
[56]
A. Troisi and G. Orlandi, Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder, Phys. Rev. Lett. 96(8), 086601 (2006)
CrossRef ADS Google scholar
[57]
T. Sakanoue and H. Sirringhaus, Band-like temperature dependence of mobility in a solution-processed organic semiconductor, Nat. Mater. 9(9), 736 (2010)
CrossRef ADS Google scholar
[58]
J. Singh, E. R. Bittner, D. Beljonne, and G. D. Scholes, Fluorescence depolarization in poly[2-methoxy-5-((2-ethylhexyl)oxy)-1,4-phenylenevinylene]: Sites versus eigenstates hopping, J. Chem. Phys. 131(19), 194905 (2009)
CrossRef ADS Google scholar
[59]
M. Bednarz, V. A. Malyshev, and J. Knoester, Temperature dependent fluorescence in disordered Frenkel chains: Interplay of equilibration and local band-edge level structure, Phys. Rev. Lett. 91(21), 217401 (2003)
CrossRef ADS Google scholar
[60]
J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, Efficient energy transfer in light-harvesting systems (III): The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO, J. Phys. Chem. Lett. 2(24), 3045 (2011)
CrossRef ADS Google scholar
[61]
G. T. de Laissardière, J. P. Julien, and D. Mayou, Quantum transport of slow charge carriers in quasicrystals and correlated systems, Phys. Rev. Lett. 97, 026601 (2006)
CrossRef ADS Google scholar
[62]
V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J. L. Bredas, Charge transport in organic semiconductors, Chem. Rev. 107(4), 926 (2007)
CrossRef ADS Google scholar
[63]
F. Ortmann, F. Bechstedt, and K. Hannewald, Theory of charge transport in organic crystals: Beyond Holstein’s small-polaron model, Phys. Rev. B 79(23), 235206 (2009)
CrossRef ADS Google scholar
[64]
S. Ciuchi, S. Fratini, and D. Mayou, Transient localization in crystalline organic semiconductors, Phys. Rev. B 83(8), 081202 (2011)
CrossRef ADS Google scholar
[65]
Y. Cheng and R. J. Silbey, A unified theory for charge-carrier transport in organic crystals, J. Chem. Phys. 128(11), 114713 (2008)
CrossRef ADS Google scholar
[66]
J. M. Moix, M. Khasin, and J. Cao, Coherent quantum transport in disordered systems (I): The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems, New J. Phys. 15(8), 085010 (2013)
CrossRef ADS Google scholar
[67]
C. Chuang, C. K. Lee, J. M. Moix, J. Knoester, and J. Cao, Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition, arXiv: 1511.01198 (2015)
[68]
A. O. Niskanen, Y. Nakamura, and J. P. Pekola, Information entropic superconducting microcooler, Phys. Rev. B 76(17), 174523 (2007)
CrossRef ADS Google scholar
[69]
K. Le Hur, Kondo resonance of a microwave photon, Phys. Rev. B 85(14), 140506 (2012)
CrossRef ADS Google scholar
[70]
M. Galperin, M. A. Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter 19(10), 103201 (2007)
CrossRef ADS Google scholar
[71]
J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, Singapore: World Scientific, 2010
CrossRef ADS Google scholar
[72]
D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett. 94(3), 034301 (2005)
CrossRef ADS Google scholar
[73]
D. Segal, Stochastic pumping of heat: Approaching the Carnot efficiency, Phys. Rev. Lett. 101(26), 260601 (2008)
CrossRef ADS Google scholar
[74]
J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
CrossRef ADS Google scholar
[75]
A. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys. Rev. Lett. 46(4), 211 (1981)
CrossRef ADS Google scholar
[76]
N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef ADS Google scholar
[77]
L. Zhu, S. Kirchner, Q. M. Si, and A. Georges, Quantum critical properties of the Bose–Fermi Kondo model in a large-N limit, Phys. Rev. Lett. 93(26), 267201 (2004)
CrossRef ADS Google scholar
[78]
K. Saito and T. Kato, Kondo signature in heat transfer via a local two-state system, Phys. Rev. Lett. 111(21), 214301 (2013)
CrossRef ADS Google scholar
[79]
A. Ishizaki and G. R. Fleming, Quantum coherence in photosynthetic light harvesting, Annu. Rev. Condens. Matter Phys. 3(1), 333 (2012)
CrossRef ADS Google scholar
[80]
J. L. Wu, R. J. Silbey, and J. Cao, Generic mechanism of optimal energy transfer efficiency: A scaling theory of the mean first-passage time in exciton systems, Phys. Rev. Lett. 110(20), 200402 (2013)
CrossRef ADS Google scholar
[81]
S. F. Huelga and M. B. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54(4), 181 (2013)
CrossRef ADS Google scholar
[82]
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
CrossRef ADS Google scholar
[83]
T. V. Tscherbul and P. Brumer, Long-lived quasistationary coherences in a V-type system driven by incoherent light, Phys. Rev. Lett. 113(11), 113601 (2014)
CrossRef ADS Google scholar
[84]
J. Olšina, A. G. Dijkstra, C. Wang, and J. Cao, Can natural sunlight induce coherent exciton dynamics? arXiv: 1408.5385 (2014)
[85]
H. T. Quan, Y. X. Liu, C. P. Sun, and F. Nori, Quantum thermodynamic cycles and quantum heat engines, Phys. Rev. E 76(3), 031105 (2007)
CrossRef ADS Google scholar
[86]
M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky, Quantum heat engine power can be increased by noise-induced coherence, Proc. Natl. Acad. Sci. USA 108(37), 15097 (2011)
CrossRef ADS Google scholar
[87]
K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, Photosynthetic reaction center as a quantum heat engine, Proc. Natl. Acad. Sci. USA 110(8), 2746 (2013)
CrossRef ADS Google scholar
[88]
H. E. D. Scovil and E. O. Schulz-DuBois, Three-level masers as heat engines, Phys. Rev. Lett. 2(6), 262 (1959)
CrossRef ADS Google scholar
[89]
J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil, Quantum equivalent of the carnot cycle, Phys. Rev. 156(2), 343 (1967)
CrossRef ADS Google scholar
[90]
E. Geva and R. Kosloff, The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier, J. Chem. Phys. 104(19), 7681 (1996)
CrossRef ADS Google scholar
[91]
E. Boukobza and D. J. Tannor, Three-level systems as amplifiers and attenuators: A thermodynamic analysis, Phys. Rev. Lett. 98(24), 240601 (2007)
CrossRef ADS Google scholar
[92]
D. Gelbwaser-Klimovsky and A. Aspuru-Guzik, Strongly coupled quantum heat machines, J. Phys. Chem. Lett. 6(17), 3477 (2015)
CrossRef ADS Google scholar
[93]
J. Cao and R. J. Silbey, Optimization of exciton trapping in energy transfer processes, J. Phys. Chem. A 113(50), 13825 (2009)
CrossRef ADS Google scholar
[94]
C. Wang, J. Ren, and J. Cao, Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots, New J. Phys. 16(4), 045019 (2014)
CrossRef ADS Google scholar
[95]
A. G. Dijkstra, C. Wang, J. Cao, and G. R. Fleming, Coherent exciton dynamics in the presence of underdamped vibrations, J. Phys. Chem. Lett. 6(4), 627 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(611 KB)

Accesses

Citations

Detail

Sections
Recommended

/