Number-resolved master equation approach to quantum measurement and quantum transport

Xin-Qi Li

PDF(746 KB)
PDF(746 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110307. DOI: 10.1007/s11467-016-0539-8
REVIEW ARTICLE
REVIEW ARTICLE

Number-resolved master equation approach to quantum measurement and quantum transport

Author information +
History +

Abstract

In addition to the well-known Landauer–Büttiker scattering theory and the nonequilibrium Green’s function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number (n)-resolved master equation (n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.

Keywords

quantum transport / quantum measurement / master equation approach

Cite this article

Download citation ▾
Xin-Qi Li. Number-resolved master equation approach to quantum measurement and quantum transport. Front. Phys., 2016, 11(4): 110307 https://doi.org/10.1007/s11467-016-0539-8

References

[1]
H. Carmichael, An Open Systems Approach to Quantum Optics, Berlin: Springer-Verlag, 1993
[2]
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994
[3]
H. M. Wiseman and G. J. Milburn, Quantum Measure-ment and Control, Cambridge: Cambridge University Press, 2009
CrossRef ADS Google scholar
[4]
S. A. Gurvitz, Measurements with a noninvasive detector and dephasing mechanism, Phys. Rev. B 56(23), 15215 (1997)
CrossRef ADS Google scholar
[5]
I. L. Aleiner, N. S. Wingreen, and Y. Meir, Dephasing and the orthogonality catastrophe in tunneling through a quantum dot: The “which path?” interferometer, Phys. Rev. Lett. 79(19), 3740 (1997)
CrossRef ADS Google scholar
[6]
Y. Levinson, Dephasing in a quantum dot due to coupling with a quantum point contact, Europhys. Lett. 39(3), 299 (1997)
CrossRef ADS Google scholar
[7]
L. Stodolsky, Measurement process in a variable-barrier system, Phys. Lett. B 459(1-3), 193 (1999)
CrossRef ADS Google scholar
[8]
E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Double-slit experiments in quantum dots, Nature 391(6670), 871 (1998)
CrossRef ADS Google scholar
[9]
S. Pilgram and M. Büttiker, Efficiency of mesoscopic detectors, Phys. Rev. Lett. 89(20), 200401 (2002)
CrossRef ADS Google scholar
[10]
D. Mozyrsky and I. Martin, Quantum-classical transition induced by electrical measurement, Phys. Rev. Lett. 89(1), 018301 (2002)
CrossRef ADS Google scholar
[11]
S. A. Gurvitz, L. Fedichkin, D. Mozyrsky, and G. P. Berman, Relaxation and the Zeno effect in qubit measurements, Phys. Rev. Lett. 91(6), 066801 (2003)
CrossRef ADS Google scholar
[12]
M. H. Devoret, and R. J. Schoelkopf, Amplifying quantum signals with the single-electron transistor, Nature 406(6799), 1039 (2000)
CrossRef ADS Google scholar
[13]
A. Shnirman and G. Schön, Quantum measurements performed with a single-electron transistor, Phys. Rev. B 57(24), 15400 (1998)
CrossRef ADS Google scholar
[14]
Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)
CrossRef ADS Google scholar
[15]
A. A. Clerk, S. M. Girvin, A. K. Nguyen, and A. D. Stone, Resonant cooper-pair tunneling: quantum noise and measurement characteristics, Phys. Rev. Lett. 89(17), 176804 (2002)
CrossRef ADS Pubmed Google scholar
[16]
A. N. Korotkov, Output spectrum of a detector measuring quantum oscillations, Phys. Rev. B 63(8), 085312 (2001)
CrossRef ADS Google scholar
[17]
A. N. Korotkov and D. V. Averin, Continuous weak measurement of quantum coherent oscillations, Phys. Rev. B 64(16), 165310 (2001)
CrossRef ADS Google scholar
[18]
R. Ruskov and A. N. Korotkov, Spectrum of qubit oscillations from Bloch equations, Phys. Rev. B 67, 075303 (2003), arXiv: cond-mat/0202303
CrossRef ADS Google scholar
[19]
H. S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun, Continuous quantum measurement of two coupled quantum dots using a point contact: A quantum trajectory approach, Phys. Rev. B 63(12), 125326 (2001)
CrossRef ADS Google scholar
[20]
H. S. Goan and G. J. Milburn, Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement, Phys. Rev. B 64(23), 235307 (2001)
CrossRef ADS Google scholar
[21]
X. Q. Li, W. K. Zhang, P. Cui, J. S. Shao, Z. S. Ma, and Y. J. Yan, Quantum measurement of a solid-state qubit: A unified quantum master equation approach revisited, Phys. Rev. B 69, 085315 (2004), arXiv: cond-mat/0309574
CrossRef ADS Google scholar
[22]
A. Shnirman, D. Mozyrsky, and I. Martin, Electrical quantum measurement of a two-level system at arbitrary voltage and temperature, arXiv: cond-mat/0211618
[23]
T. M. Stace and S. D. Barrett, Continuous measurement of a charge qubit with a point contact detector at arbitrary bias: the role of inelastic tunnelling, Phys. Rev. Lett. 92, 136802 (2004), arXiv: cond-mat/0309610
CrossRef ADS Google scholar
[24]
D.V. Averin and A. N. Korotkov, Comment on "Continuous quantum measurement: Inelastic tunneling and lack of current oscillations", arXiv: cond-mat/0404549
[25]
T. M. Stace and S. D. Barrett, Reply to Comment on "Continuous quantum measurement: Inelastic tunneling and lack of current oscillations", Phys. Rev. Lett. 94, 069702 (2005), arXiv: cond-mat/0406751
CrossRef ADS Google scholar
[26]
X. Q. Li, P. Cui, and Y. Yan, Spontaneous relaxation of a charge qubit under electrical measurement, Phys. Rev. Lett. 94(6), 066803 (2005)
CrossRef ADS Google scholar
[27]
X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B 71(20), 205304 (2005)
CrossRef ADS Google scholar
[28]
S. Datta, Electronic Transport in Mesoscopic Systems, New York: Cambridge University Press, 1995
CrossRef ADS Google scholar
[29]
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Berlin: Springer-Verlag, 1996
[30]
S. A. Gurvitz and Y. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
CrossRef ADS Google scholar
[31]
S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Interference effects in resonant tunneling and the Pauli principle, Phys. Lett. A 212(1-2), 91 (1996)
CrossRef ADS Google scholar
[32]
Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep. 336(1-2), 1 (2000)
CrossRef ADS Google scholar
[33]
Yu. V. Nazarov (Ed.), Quantum Noise in Mesoscopic Physics, Dordrecht: Kluwer, 2003
CrossRef ADS Google scholar
[34]
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
[35]
L. S. Levitov, H. W. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys. 37(10), 4845 (1996)
CrossRef ADS Google scholar
[36]
W. Belzig and Y. V. Nazarov, Full current statistics in diffusive normal-superconductor structures, Phys. Rev. Lett. 87(6), 067006 (2001)
CrossRef ADS Google scholar
[37]
W. Belzig and Y. V. Nazarov, Full counting statistics of electron transfer between superconductors, Phys. Rev. Lett. 87(19), 197006 (2001)
CrossRef ADS Google scholar
[38]
P. Samuelsson and M. Büttiker, Chaotic dot-superconductor analog of the Hanbury Brown-Twiss effect, Phys. Rev. Lett. 89(4), 046601 (2002)
CrossRef ADS Google scholar
[39]
P. Samuelsson and M. Büttiker, Semiclassical theory of current correlations in chaotic dot-superconductor systems, Phys. Rev. B 66(20), 201306 (2002)
CrossRef ADS Google scholar
[40]
S. Pilgram and P. Samuelsson, Noise and full counting statistics of incoherent multiple Andreev reflection, Phys. Rev. Lett. 94(8), 086806 (2005)
CrossRef ADS Google scholar
[41]
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Super-Poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots, and nanotubes, Phys. Rev. B 71(4), 045341 (2005)
CrossRef ADS Google scholar
[42]
J. Aghassi, A. Thielmann, M. H. Hettler, and G. Schön, Shot noise in transport through two coherent strongly coupled quantum dots, Phys. Rev. B 73(19), 195323 (2006)
CrossRef ADS Google scholar
[43]
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Cotunneling current and shot noise in quantum dots, Phys. Rev. Lett. 95(14), 146806 (2005)
CrossRef ADS Google scholar
[44]
W. Belzig, Full counting statistics of super-Poissonian shot noise in multilevel quantum dots, Phys. Rev. B 71, 161301(R) (2005)
[45]
B. R. Bulka, Current and power spectrum in a magnetic tunnel device with an atomic-size spacer, Phys. Rev. B 62(2), 1186 (2000)
CrossRef ADS Google scholar
[46]
A. Cottet, W. Belzig, and C. Bruder, Positive cross correlations in a three-terminal quantum dot with ferromagnetic contacts, Phys. Rev. Lett. 92(20), 206801 (2004)
CrossRef ADS Google scholar
[47]
Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Single-electron tunneling with strong mechanical feedback, Phys. Rev. Lett. 93(13), 136802 (2004)
CrossRef ADS Google scholar
[48]
T. Novotný, A. Donarini, C. Flindt, and A. P. Jauho, Shot noise of a quantum shuttle, Phys. Rev. Lett. 92(24), 248302 (2004)
CrossRef ADS Google scholar
[49]
C. Flindt, T. Novotny, and A. P. Jauho, Full counting statistics of nano-electromechanical systems, Europhys. Lett. 69(3), 475 (2005)
CrossRef ADS Google scholar
[50]
C. W. Groth, B. Michaelis, and C. W. J. Beenakker, Counting statistics of coherent population trapping in quantum dots, Phys. Rev. B 74(12), 125315 (2006)
CrossRef ADS Google scholar
[51]
S. K. Wang, H. J. Jiao, F. Li, X. Q. Li, and Y. J. Yan, Full counting statistics of transport through two-channel Coulomb blockade systems, Phys. Rev. B 76(12), 125416 (2007)
CrossRef ADS Google scholar
[52]
S. Gustavsson, R. Leturcq, B. Simovič, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 96, 076605 (2006)
CrossRef ADS Google scholar
[53]
T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, Bidirectional counting of single electrons, Science 312(5780), 1634 (2006)
CrossRef ADS Google scholar
[54]
Y. J. Yan, Quantum Fokker-Planck theory in a non-Gaussian-Markovian medium, Phys. Rev. A 58(4), 2721 (1998)
CrossRef ADS Google scholar
[55]
J. Y. Luo, X. Q. Li, and Y. J. Yan, Calculation of the current noise spectrum in mesoscopic transport: A quantum master equation approach, Phys. Rev. B 76(8), 085325 (2007)
CrossRef ADS Google scholar
[56]
J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57(3), 617 (1985)
CrossRef ADS Google scholar
[57]
P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge: Cambridge University Press, 1998
CrossRef ADS Google scholar
[58]
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478(1-3), 1 (2009)
CrossRef ADS Google scholar
[59]
D. Chandler, Introduction to Modern Statistical Mechanics, Oxford: Oxford University Press, 1987
[60]
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Boulder: Westview Press, 1992
[61]
J. P. Garrahan and I. Lesanovsky, Thermodynamics of quantum jump trajectories, Phys. Rev. Lett. 104(16), 160601 (2010)
CrossRef ADS Google scholar
[62]
S. K. Wang, H. J. Jiao, F. Li, X. Q. Li, and Y. J. Yan, Full counting statistics of transport through two-channel Coulomb blockade systems, Phys. Rev. B 76(12), 125416 (2007)
CrossRef ADS Google scholar
[63]
J. Li, Y. Liu, J. Ping, S. S. Li, X. Q. Li, and Y. J. Yan, Large-deviation analysis for counting statistics in mesoscopic transport, Phys. Rev. B 84(11), 115319 (2011)
CrossRef ADS Google scholar
[64]
A. N. Korotkov, Output spectrum of a detector measuring quantum oscillations, Phys. Rev. B 63(8), 085312 (2001)
CrossRef ADS Google scholar
[65]
A. N. Korotkov, Selective quantum evolution of a qubit state due to continuous measurement, Phys. Rev. B 63(11), 115403 (2001)
CrossRef ADS Google scholar
[66]
D. Mozyrsky, I. Martin, and M. B. Hastings, Quantum-limited sensitivity of single-electron-transistor-based displacement detectors, Phys. Rev. Lett. 92(1), 018303 (2004)
CrossRef ADS Google scholar
[67]
N. P. Oxtoby, H. M. Wiseman, and H. B. Sun, Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor, Phys. Rev. B 74(4), 045328 (2006)
CrossRef ADS Google scholar
[68]
S. A. Gurvitz and G. P. Berman, Single qubit measurements with an asymmetric single-electron transistor, Phys. Rev. B 72(7), 073303 (2005)
CrossRef ADS Google scholar
[69]
A. N. Korotkov and D. V. Averin, Continuous weak measurement of quantum coherent oscillations, Phys. Rev. B 64(16), 165310 (2001)
CrossRef ADS Google scholar
[70]
D. V. Averin, Quantum nondemolition measurements of a qubit, Phys. Rev. Lett. 88(20), 207901 (2002)
CrossRef ADS Google scholar
[71]
A. N. Jordan and M. Büttiker, Quantum nondemolition measurement of a kicked qubit, Phys. Rev. B 71(12), 125333 (2005)
CrossRef ADS Google scholar
[72]
S. K. Wang, J. S. Jin, and X. Q. Li, Continuous weak measurement and feedback control of a solid-state charge qubit: A physical unravelling of non-Lindblad master equation, Phys. Rev. B 75(15), 155304 (2007)
CrossRef ADS Google scholar
[73]
A. N. Jordan and M. Büttiker, Continuous quantum measurement with independent detector cross correlations, Phys. Rev. Lett. 95(22), 220401 (2005)
CrossRef ADS Google scholar
[74]
H. J. Jiao, F. Li, S. K. Wang, and X. Q. Li, Weak measurement of qubit oscillations with strong response detectors: Violation of the fundamental bound imposed on linear detectors, Phys. Rev. B 79(7), 075320 (2009)
CrossRef ADS Google scholar
[75]
A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Coherent coupling of two quantum dots embedded in an Aharonov-Bohm interferometer, Phys. Rev. Lett. 87(25), 256802 (2001)
CrossRef ADS Google scholar
[76]
A. W. Holleitner, R. H. Blick, A. K. Huttel, K. Eberl, and J. P. Kotthaus, Probing and controlling the bonds of an artificial molecule, Science 297(5578), 70 (2002)
CrossRef ADS Google scholar
[77]
J. C. Chen, A. M. Chang, and M. R. Melloch, Transition between quantum states in a parallel-coupled double quantum dot, Phys. Rev. Lett. 92(17), 176801 (2004)
CrossRef ADS Google scholar
[78]
M. Sigrist, T. Ihn, K. Ensslin, D. Loss, M. Reinwald, and W. Wegscheider, Phase coherence in the inelastic cotunneling regime, Phys. Rev. Lett. 96(3), 036804 (2006)
CrossRef ADS Google scholar
[79]
J. König and Y. Gefen, Coherence and partial coherence in interacting electron systems, Phys. Rev. Lett. 86(17), 3855 (2001)
CrossRef ADS Google scholar
[80]
J. König and Y. Gefen, Aharonov-Bohm interferometry with interacting quantum dots: Spin configurations, asymmetric interference patterns, bias-voltage-induced Aharonov-Bohm oscillations, and symmetries of transport coefficients, Phys. Rev. B 65, 045316 (2002)
CrossRef ADS Google scholar
[81]
I. Neder and E. Ginossar, Behavior of electronic interferometers in the nonlinear regime, Phys. Rev. Lett. 100(19), 196806 (2008)
CrossRef ADS Google scholar
[82]
F. Li, X. Q. Li, W. M. Zhang, and S. Gurvitz, Magnetic field switching in parallel quantum dots, Europhys. Lett. 88(3), 37001 (2009)
CrossRef ADS Google scholar
[83]
F. Li, H. J. Jiao, J. Y. Luo, X. Q. Li, and S. A. Gurvitz, Coulomb blockade double-dot Aharonov–Bohm interferometer: Giant fluctuations, Physica E 41(9), 1707 (2009)
CrossRef ADS Google scholar
[84]
Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Probing the existence and dynamics of Majorana fermion via transport through a quantum dot, Phys. Rev. B 86(11), 115311 (2012)
CrossRef ADS Google scholar
[85]
P. Wang, Y. Cao, M. Gong, G. Xiong, and X. Q. Li, Cross-correlations mediated by Majorana bound states, Europhys. Lett. 103(5), 57016 (2013)
CrossRef ADS Google scholar
[86]
P. Wang, Y. Cao, M. Gong, S. S. Li, and X. Q. Li, Demonstrating nonlocality-induced teleportation through Majorana bound states in a semiconductor nanowire, Phys. Lett. A 378(13), 937 (2014)
CrossRef ADS Google scholar
[87]
E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171 (1937)
CrossRef ADS Google scholar
[88]
F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
CrossRef ADS Google scholar
[89]
M. Franz, Race for Majorana fermions, Physics 3, 24 (2010)
CrossRef ADS Google scholar
[90]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Physics-Uspekhi 44(10S), 131 (2001)
CrossRef ADS Google scholar
[91]
R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
CrossRef ADS Google scholar
[92]
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
CrossRef ADS Google scholar
[93]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
CrossRef ADS Google scholar
[94]
J. D. Sau, S. Tewari, and S. Das Sarma, Experimental and materials considerations for the topological superconducting state in electron- and hole-doped semiconductors: Searching for non-Abelian Majorana modes in 1D nanowires and 2D heterostructures, Phys. Rev. B 85(6), 064512 (2012)
CrossRef ADS Google scholar
[95]
L. Fu and C. L. Kane, Superconducting proximity effect and majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
CrossRef ADS Google scholar
[96]
J. Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B 81(12), 125318 (2010)
CrossRef ADS Google scholar
[97]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[98]
D. E. Liu and H. U. Baranger, Detecting a Majorana-fermion zero mode using a quantum dot, Phys. Rev. B 84(20), 201308 (2011)
CrossRef ADS Google scholar
[99]
C. J. Bolech and E. Demler, Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments, Phys. Rev. Lett. 98(23), 237002 (2007)
CrossRef ADS Google scholar
[100]
K. T. Law, P. A. Lee, and T. K. Ng, Majorana fermion induced resonant Andreev reflection, Phys. Rev. Lett. 103(23), 237001 (2009)
CrossRef ADS Google scholar
[101]
S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D. H. Lee, Testable signatures of quantum nonlocality in a two-dimensional chiral p-wave superconductor, Phys. Rev. Lett. 100(2), 027001 (2008)
CrossRef ADS Google scholar
[102]
L. Y. Chen and C. S. Ting, Theoretical investigation of noise characteristics of double-barrier resonant-tunneling systems, Phys. Rev. B 43(5), 4534 (1991)
CrossRef ADS Pubmed Google scholar
[103]
J. Jin, J. Li, Y. Liu, X. Q. Li, and Y. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)
CrossRef ADS Google scholar
[104]
Y. Liu, J. S. Jin, J. Li, X. Q. Li, and Y. J. Yan, Nonequilibrium shot noise spectrum through a quantum dot in the Kondo Regime: A master equation approach under self-consistent born approximation, Commum. Theor. Phys. 60(4), 503 (2013)
CrossRef ADS Google scholar
[105]
Y. Liu, J. S. Jin, J. Li, X. Q. Li, and Y. J. Yan, Number-resolved master equation approach to quantum transport under the self-consistent Born approximation, Science China – Phys. Mech. & Astron. 56(10), 1866 (2013)
CrossRef ADS Google scholar
[106]
H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50(24), 18436 (1994)
CrossRef ADS Google scholar
[107]
J. König, H. Schoeller, and G. Schön, Zero-bias anomalies and boson-assisted tunneling through quantum dots, Phys. Rev. Lett. 76(10), 1715 (1996)
CrossRef ADS Google scholar
[108]
J. König, J. Schmid, H. Schoeller, and G. Schön, Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport, Phys. Rev. B 54(23), 16820 (1996)
CrossRef ADS Google scholar
[109]
A. Thielmann, M. H. Hettler, J. König, and G. Schön, Cotunneling current and shot noise in quantum dots, Phys. Rev. Lett. 95(14), 146806 (2005)
CrossRef ADS Google scholar
[110]
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
CrossRef ADS Google scholar
[111]
X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic Coulomb blockade in single-lead quantum dots, New J. Phys. 10(9), 093016 (2008)
CrossRef ADS Google scholar
[112]
X. Zheng, J. Jin, S. Welack, M. Luo, and Y. Yan, Numerical approach to time-dependent quantum transport and dynamical Kondo transition, J. Chem. Phys. 130(16), 164708 (2009)
CrossRef ADS Google scholar
[113]
Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
CrossRef ADS Google scholar
[114]
J. N. Pedersen and A. Wacker, Tunneling through nanosystems: Combining broadening with many-particle states, Phys. Rev. B 72(19), 195330 (2005)
CrossRef ADS Google scholar
[115]
J. N. Pedersen and A. Wacker, Modeling of cotunneling in quantum dot systems, Physica E 42(3), 595 (2010)
CrossRef ADS Google scholar
[116]
A. Croy and U. Saalmann, Coherent manipulation of charge qubits in double quantum dots, New J. Phys. 13(4), 043015 (2011)
CrossRef ADS Google scholar
[117]
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B 80(11), 115107 (2009)
CrossRef ADS Google scholar
[118]
M. Esposito and M. Galperin, Transport in molecular states language: Generalized quantum master equation approach, Phys. Rev. B 79(20), 205303 (2009)
CrossRef ADS Google scholar
[119]
M. Esposito and M. Galperin, Self-consistent quantum master equation approach to molecular transport, J. Phys. Chem. C 114(48), 20362 (2010)
CrossRef ADS Google scholar
[120]
J. Kern and M. Grifoni, Transport across an Anderson quantum dot in the intermediate coupling regime, Eur. Phys. J. B 86(9), 384 (2013)
CrossRef ADS Google scholar
[121]
R. D. Mattuck, A guide to Feynman diagrams in the many-body problem, New York: Dover publications, 1974
[122]
D. C. Ralph and R. A. Buhrman, Kondo-assisted and resonant tunneling via a single charge trap: A realization of the Anderson model out of equilibrium, Phys. Rev. Lett. 72(21), 3401 (1994)
CrossRef ADS Google scholar
[123]
J. S. Jin, X. Q. Li, M. Luo, and Y. J. Yan, Non-Markovian shot noise spectrum of quantum transport through quantum dots, J. Appl. Phys. 109(5), 053704 (2011)
CrossRef ADS Google scholar
[124]
D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Kondo effect in a single-electron transistor, Nature 391, 156 (1998)
CrossRef ADS Google scholar
[125]
S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, A tunable Kondo effect in quantum dots, Science 281(5376), 540 (1998)
CrossRef ADS Google scholar
[126]
L. I. Glazman and M. Pustilnik, in: Lectures notes of the Les Houches Summer School 2004 in “Nanophysics: Coherence and Transport", edited by H. Bouchiat, et al., Elsevier, 2005, pp. 427–478
[127]
T. K. Ng and P. A. Lee, On-site Coulomb repulsion and resonant tunneling, Phys. Rev. Lett. 61(15), 1768 (1988)
CrossRef ADS Google scholar
[128]
S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the Kondo resonance by resonant tunneling through an Anderson impurity, Phys. Rev. Lett. 67(26), 3720 (1991)
CrossRef ADS Google scholar
[129]
Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68(16), 2512 (1992)
CrossRef ADS Google scholar
[130]
Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)
CrossRef ADS Google scholar
[131]
D. C. Ralph and R. A. Buhrman, Kondo-assisted and resonant tunneling via a single charge trap: A realization of the Anderson model out of equilibrium, Phys. Rev. Lett. 72(21), 3401 (1994)
CrossRef ADS Google scholar
[132]
J. Paaske, A. Rosch, P. Wölfle, N. Mason, C. M. Marcus, and J. Nygard, Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes, Nat. Phys. 2(7), 460 (2006)
CrossRef ADS Google scholar
[133]
M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and D. Goldhaber-Gordon, Universal scaling in nonequilibrium transport through a single channel Kondo dot, Phys. Rev. Lett. 100(24), 246601 (2008)
CrossRef ADS Google scholar
[134]
Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
CrossRef ADS Google scholar
[135]
T. Delattre, C. Feuillet-Palma, L. G. Herrmann, P. Morfin, J. M. Berroir, G. Fève, B. Plaçais, D. C. Glattli, M. S. Choi, C. Mora, and T. Kontos, Noisy Kondo impurities, Nat. Phys. 5(3), 208 (2009)
CrossRef ADS Google scholar
[136]
O. Zarchin, M. Zaffalon, M. Heiblum, D. Mahalu, and V. Umansky, Two-electron bunching in transport through a quantum dot induced by Kondo correlations, Phys. Rev. B 77(24), 241303 (2008)
CrossRef ADS Google scholar
[137]
G. H. Ding and T. K. Ng, Shot noise in out-of equilibrium resonant tunneling through an Anderson impurity, Phys. Rev. B 56, R15521 (1997)
CrossRef ADS Google scholar
[138]
A. Schiller and S. Hershfield, Toulouse limit for the nonequilibrium Kondo impurity: Currents, noise spectra, and magnetic properties, Phys. Rev. B 58(22), 14978 (1998)
CrossRef ADS Google scholar
[139]
T. Korb, F. Reininghaus, H. Schoeller, and J. König, Real-time renormalization group and cutoff scales in nonequilibrium applied to an arbitrary quantum dot in the Coulomb blockade regime, Phys. Rev. B 76(16), 165316 (2007)
CrossRef ADS Google scholar
[140]
C. P. Moca, P. Simon, C. H. Chung, and G. Zarand, Nonequilibrium frequency-dependent noise through a quantum dot: A real-time functional renormalization group approach, Phys. Rev. B 83, 201303(R) (2011)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(746 KB)

Accesses

Citations

Detail

Sections
Recommended

/