Dissipation equation of motion approach to open quantum systems
YiJing Yan, Jinshuang Jin, Rui-Xue Xu, Xiao Zheng
Dissipation equation of motion approach to open quantum systems
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
quantum dissipation / quantum transport / entangled system-and-bath dynamics
[1] |
A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965)
CrossRef
ADS
Google scholar
|
[2] |
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
CrossRef
ADS
Google scholar
|
[3] |
V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)
CrossRef
ADS
Google scholar
|
[4] |
Y. J. Yan, Quantum Fokker-Planck theory in a non-Gaussian–Markovian medium, Phys. Rev. A 58(4), 2721 (1998)
CrossRef
ADS
Google scholar
|
[5] |
R. X. Xu and Y. J. Yan, Theory of open quantum systems, J. Chem. Phys. 116(21), 9196 (2002)
CrossRef
ADS
Google scholar
|
[6] |
Y. J. Yan and R. X. Xu, Quantum mechanics of dissipative systems, Annu. Rev. Phys. Chem. 56(1), 187 (2005)
CrossRef
ADS
Google scholar
|
[7] |
R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
CrossRef
ADS
Google scholar
|
[8] |
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
|
[9] |
U. Weiss, Quantum Dissipative Systems, 3rd Ed., Series in Modern Condensed Matter Physics, Vol. 13, Singapore: World Scientific, 2008
|
[10] |
J. S. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
CrossRef
ADS
Google scholar
|
[11] |
Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)
CrossRef
ADS
Google scholar
|
[12] |
Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)
CrossRef
ADS
Google scholar
|
[13] |
Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)
CrossRef
ADS
Google scholar
|
[14] |
R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, Exact quantum master equation via the calculus on path integrals, J. Chem. Phys. 122(4), 041103 (2005)
CrossRef
ADS
Google scholar
|
[15] |
R. X. Xu and Y. J. Yan, Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach, Phys. Rev. E 75(3), 031107 (2007)
CrossRef
ADS
Google scholar
|
[16] |
J. J. Ding, J. Xu, J. Hu, R. X. Xu, and Y. J. Yan, Optimized hierarchical equations of motion theory for Drude dissipation and efficient implementation to nonlinear spectroscopies, J. Chem. Phys. 135(16), 164107 (2011)
CrossRef
ADS
Google scholar
|
[17] |
J. J. Ding, R. X. Xu, and Y. J. Yan, Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms, J. Chem. Phys. 136(22), 224103 (2012)
CrossRef
ADS
Google scholar
|
[18] |
J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
CrossRef
ADS
Google scholar
|
[19] |
Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan, Electron transfer dynamics: Zusman equation versus exact theory, J. Chem. Phys. 130(16), 164518 (2009)
CrossRef
ADS
Google scholar
|
[20] |
K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)
CrossRef
ADS
Google scholar
|
[21] |
Y. J. Yan, Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach, J. Chem. Phys. 140(5), 054105 (2014)
CrossRef
ADS
Google scholar
|
[22] |
H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study, J. Chem. Phys. 142(2), 024112 (2015)
CrossRef
ADS
Google scholar
|
[23] |
J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, Current noise spectra and mechanisms with dissipaton equation of motion theory, J. Chem. Phys. 142(23), 234108 (2015)
CrossRef
ADS
Google scholar
|
[24] |
S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, New York: Oxford University Press, 1995
|
[25] |
Y. J. Yan and S. Mukamel, Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical lineshapes, J. Chem. Phys. 89(8), 5160 (1988)
CrossRef
ADS
Google scholar
|
[26] |
A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 1983, 149: 374 [Erratum: 153, 445 (1984)]
CrossRef
ADS
Google scholar
|
[27] |
A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)
CrossRef
ADS
Google scholar
|
[28] |
J. Hu, R. X. Xu, and Y. J. Yan, Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)
CrossRef
ADS
Google scholar
|
[29] |
J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems, J. Chem. Phys. 134(24), 244106 (2011)
CrossRef
ADS
Google scholar
|
[30] |
R. X. Xu, B. L. Tian, J. Xu, Q. Shi, and Y. J. Yan, Hierarchical quantum master equation with semiclassical Drude dissipation, J. Chem. Phys. 131(21), 214111 (2009)
CrossRef
ADS
Google scholar
|
[31] |
B. L. Tian, J. J. Ding, R. X. Xu, and Y. J. Yan, Biexponential theory of Drude dissipation via hierarchical quantum master equation, J. Chem. Phys. 133(11), 114112 (2010)
CrossRef
ADS
Google scholar
|
[32] |
H. D. Zhang and Y. J. Yan, Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance, J. Chem. Phys. 143(21), 214112 (2015)
CrossRef
ADS
Google scholar
|
[33] |
X. Zheng, R. X. Xu, J. Xu, J. S. Jin, J. Hu, and Y. J. Yan, Hierarchical equations of motion for quantum dissipation and quantum transport, Prog. Chem. 2012, 24(06): 1129, http://www.progchem.ac.cn/EN/abstract/abstract10858.shtml
|
[34] |
P. Cui, X. Q. Li, J. S. Shao, and Y. J. Yan, Quantum transport from the perspective of quantum open systems, Phys. Lett. A 357(6), 449 (2006)
CrossRef
ADS
Google scholar
|
[35] |
J. S. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)
CrossRef
ADS
Google scholar
|
[36] |
D. Hou, S. K. Wang, R. L. Wang, L. Z. Ye, R. X. Xu, X. Zheng, and Y. J. Yan, Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers, J. Chem. Phys. 142(10), 104112 (2015)
CrossRef
ADS
Google scholar
|
[37] |
Y. Tanimura and P. G. Wolynes, Quantum and classical Fokker-Planck equations for a Guassian–Markovian noise bath, Phys. Rev. A 43(8), 4131 (1991)
CrossRef
ADS
Google scholar
|
[38] |
X. Q. Li and Y. J. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices, Phys. Rev. B 75(7), 075114 (2007)
CrossRef
ADS
Google scholar
|
[39] |
Y. Tanimura, Real-time and imaginary-time quantum hierarchal Fokker–Planck equations, J. Chem. Phys. 142(14), 144110 (2015)
CrossRef
ADS
Google scholar
|
[40] |
L. H. Ryder, Quantum Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 1996
CrossRef
ADS
Google scholar
|
[41] |
H. D. Zhang, J. Xu, R. X. Xu, and Y. J. Yan, Modified Zusman qquation for quantum solvation dynamics and rate processes, in: Reaction Rate Constant Computations: Theories and Applications, London: edited by K.-L. Han and T.-S. Chu, pp. 319–336, Ch. 13, RSC Theoretical and Computational Chemistry Series No.6, 2014, http://dx.doi.org/10.1039/9781849737753-00319
CrossRef
ADS
Google scholar
|
[42] |
X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic electronic response of a quantum dot driven by time-dependent voltage, J. Chem. Phys. 129(18), 184112 (2008)
CrossRef
ADS
Google scholar
|
[43] |
X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic Coulomb blockade in single-lead quantum dots, New J. Phys. 10(9), 093016 (2008)
CrossRef
ADS
Google scholar
|
[44] |
X. Zheng, J. Y. Luo, J. S. Jin, and Y. J. Yan, Complex non-Markovian effect on time-dependent quantum transport, J. Chem. Phys. 130(12), 124508 (2009)
CrossRef
ADS
Google scholar
|
[45] |
F. Jiang, J. S. Jin, S. K. Wang, and Y. J. Yan, Inelastic electron transport through mesoscopic systems: Heating versus cooling and sequential tunneling versus cotunneling processes, Phys. Rev. B 85(24), 245427 (2012)
CrossRef
ADS
Google scholar
|
[46] |
S. K. Wang, X. Zheng, J. S. Jin, and Y. J. Yan, Hierarchical Liouville-space approach to nonequilibrium dynamic properties of quantum impurity systems, Phys. Rev. B 88(3), 035129 (2013)
CrossRef
ADS
Google scholar
|
[47] |
X. Zheng, Y. J. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)
CrossRef
ADS
Google scholar
|
[48] |
L. Z. Ye, D. Hou, R. L. Wang, D. W. Cao, X. Zheng, and Y. J. Yan, Thermopower of few-electron quantum dots with Kondo correlations, Phys. Rev. B 90(16), 165116 (2014)
CrossRef
ADS
Google scholar
|
[49] |
Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
CrossRef
ADS
Google scholar
|
[50] |
D. Hou, R. Wang, X. Zheng, N. H. Tong, J. H. Wei, and Y. J. Yan, Hierarchical equations of motion for impurity solver in dynamical mean-field theory, Phys. Rev. B 90(4), 045141 (2014)
CrossRef
ADS
Google scholar
|
[51] |
T. Ozaki, Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations, Phys. Rev. B 75(3), 035123 (2007)
CrossRef
ADS
Google scholar
|
[52] |
P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124(1), 41 (1961)
CrossRef
ADS
Google scholar
|
[53] |
Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)
CrossRef
ADS
Google scholar
|
[54] |
J. Xu, R. X. Xu, D. Abramavicius, H. D. Zhang, and Y. J. Yan, Advancing hierarchical equations of motion for efficient evaluation of coherent two-dimensional spectroscopy, Chin. J. Chem. Phys. 24(5), 497 (2011)
CrossRef
ADS
Google scholar
|
[55] |
J. Xu, H. D. Zhang, R. X. Xu, and Y. J. Yan, Correlated driving and dissipation in two-dimensional spectroscopy, J. Chem. Phys. 138(2), 024106 (2013)
CrossRef
ADS
Google scholar
|
[56] |
R. W. Freund and N. M. Nachtigal, QMR: A quasiminimal residual method for non-Hermitian linear systems, Numer. Math. 60(1), 315 (1991)
CrossRef
ADS
Google scholar
|
[57] |
R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14(2), 470 (1993)
CrossRef
ADS
Google scholar
|
[58] |
G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)
CrossRef
ADS
Google scholar
|
[59] |
Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan, Correlation and response functions with non-Markovian dissipation: A reduced Liouville-space theory, J. Chem. Phys. 122(8), 084115 (2005)
CrossRef
ADS
Google scholar
|
[60] |
Y. X. Cheng, W. J. Hou, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, Time-dependent transport through quantum-impurity systems with Kondo resonance, New J. Phys. 17(3), 033009 (2015)
CrossRef
ADS
Google scholar
|
[61] |
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)
CrossRef
ADS
Google scholar
|
[62] |
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Berlin: Springer, 2007
|
[63] |
A. Croy and U. Saalmann, Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices, Phys. Rev. B 80(24), 245311 (2009)
CrossRef
ADS
Google scholar
|
[64] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef
ADS
Google scholar
|
[65] |
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
CrossRef
ADS
Google scholar
|
[66] |
K. G. Wilson, The renormalization group: Critical phenomena and Kondo problem, Rev. Mod. Phys. 47(4), 773 (1975)
CrossRef
ADS
Google scholar
|
[67] |
R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Rev. Mod. Phys. 80(2), 395 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |