Dissipation equation of motion approach to open quantum systems

YiJing Yan, Jinshuang Jin, Rui-Xue Xu, Xiao Zheng

PDF(540 KB)
PDF(540 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110306. DOI: 10.1007/s11467-016-0513-5
REVIEW ARTICLE
REVIEW ARTICLE

Dissipation equation of motion approach to open quantum systems

Author information +
History +

Abstract

This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

Keywords

quantum dissipation / quantum transport / entangled system-and-bath dynamics

Cite this article

Download citation ▾
YiJing Yan, Jinshuang Jin, Rui-Xue Xu, Xiao Zheng. Dissipation equation of motion approach to open quantum systems. Front. Phys., 2016, 11(4): 110306 https://doi.org/10.1007/s11467-016-0513-5

References

[1]
A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965)
CrossRef ADS Google scholar
[2]
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
CrossRef ADS Google scholar
[3]
V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, J. Math. Phys. 17(5), 821 (1976)
CrossRef ADS Google scholar
[4]
Y. J. Yan, Quantum Fokker-Planck theory in a non-Gaussian–Markovian medium, Phys. Rev. A 58(4), 2721 (1998)
CrossRef ADS Google scholar
[5]
R. X. Xu and Y. J. Yan, Theory of open quantum systems, J. Chem. Phys. 116(21), 9196 (2002)
CrossRef ADS Google scholar
[6]
Y. J. Yan and R. X. Xu, Quantum mechanics of dissipative systems, Annu. Rev. Phys. Chem. 56(1), 187 (2005)
CrossRef ADS Google scholar
[7]
R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
CrossRef ADS Google scholar
[8]
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
[9]
U. Weiss, Quantum Dissipative Systems, 3rd Ed., Series in Modern Condensed Matter Physics, Vol. 13, Singapore: World Scientific, 2008
[10]
J. S. Shao, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys. 120(11), 5053 (2004)
CrossRef ADS Google scholar
[11]
Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Hierarchical approach based on stochastic decoupling to dissipative systems, Chem. Phys. Lett. 395(4–6), 216 (2004)
CrossRef ADS Google scholar
[12]
Y. Tanimura, Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath, Phys. Rev. A 41(12), 6676 (1990)
CrossRef ADS Google scholar
[13]
Y. Tanimura, Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems, J. Phys. Soc. Jpn. 75(8), 082001 (2006)
CrossRef ADS Google scholar
[14]
R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, Exact quantum master equation via the calculus on path integrals, J. Chem. Phys. 122(4), 041103 (2005)
CrossRef ADS Google scholar
[15]
R. X. Xu and Y. J. Yan, Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach, Phys. Rev. E 75(3), 031107 (2007)
CrossRef ADS Google scholar
[16]
J. J. Ding, J. Xu, J. Hu, R. X. Xu, and Y. J. Yan, Optimized hierarchical equations of motion theory for Drude dissipation and efficient implementation to nonlinear spectroscopies, J. Chem. Phys. 135(16), 164107 (2011)
CrossRef ADS Google scholar
[17]
J. J. Ding, R. X. Xu, and Y. J. Yan, Optimizing hierarchical equations of motion for quantum dissipation and quantifying quantum bath effects on quantum transfer mechanisms, J. Chem. Phys. 136(22), 224103 (2012)
CrossRef ADS Google scholar
[18]
J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
CrossRef ADS Google scholar
[19]
Q. Shi, L. P. Chen, G. J. Nan, R. X. Xu, and Y. J. Yan, Electron transfer dynamics: Zusman equation versus exact theory, J. Chem. Phys. 130(16), 164518 (2009)
CrossRef ADS Google scholar
[20]
K. B. Zhu, R. X. Xu, H. Y. Zhang, J. Hu, and Y. J. Yan, Hierarchical dynamics of correlated system-environment coherence and optical spectroscopy, J. Phys. Chem. B 115(18), 5678 (2011)
CrossRef ADS Google scholar
[21]
Y. J. Yan, Theory of open quantum systems with bath of electrons and phonons and spins: Many-dissipaton density matrixes approach, J. Chem. Phys. 140(5), 054105 (2014)
CrossRef ADS Google scholar
[22]
H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study, J. Chem. Phys. 142(2), 024112 (2015)
CrossRef ADS Google scholar
[23]
J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, Current noise spectra and mechanisms with dissipaton equation of motion theory, J. Chem. Phys. 142(23), 234108 (2015)
CrossRef ADS Google scholar
[24]
S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, New York: Oxford University Press, 1995
[25]
Y. J. Yan and S. Mukamel, Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical lineshapes, J. Chem. Phys. 89(8), 5160 (1988)
CrossRef ADS Google scholar
[26]
A. O. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipative system, Ann. Phys. 1983, 149: 374 [Erratum: 153, 445 (1984)]
CrossRef ADS Google scholar
[27]
A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121(3), 587 (1983)
CrossRef ADS Google scholar
[28]
J. Hu, R. X. Xu, and Y. J. Yan, Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys. 133(10), 101106 (2010)
CrossRef ADS Google scholar
[29]
J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, Padé spectrum decompositions of quantum distribution functions and optimal hierarchial equations of motion construction for quantum open systems, J. Chem. Phys. 134(24), 244106 (2011)
CrossRef ADS Google scholar
[30]
R. X. Xu, B. L. Tian, J. Xu, Q. Shi, and Y. J. Yan, Hierarchical quantum master equation with semiclassical Drude dissipation, J. Chem. Phys. 131(21), 214111 (2009)
CrossRef ADS Google scholar
[31]
B. L. Tian, J. J. Ding, R. X. Xu, and Y. J. Yan, Biexponential theory of Drude dissipation via hierarchical quantum master equation, J. Chem. Phys. 133(11), 114112 (2010)
CrossRef ADS Google scholar
[32]
H. D. Zhang and Y. J. Yan, Onsets of hierarchy truncation and self-consistent Born approximation with quantum mechanics prescriptions invariance, J. Chem. Phys. 143(21), 214112 (2015)
CrossRef ADS Google scholar
[33]
X. Zheng, R. X. Xu, J. Xu, J. S. Jin, J. Hu, and Y. J. Yan, Hierarchical equations of motion for quantum dissipation and quantum transport, Prog. Chem. 2012, 24(06): 1129, http://www.progchem.ac.cn/EN/abstract/abstract10858.shtml
[34]
P. Cui, X. Q. Li, J. S. Shao, and Y. J. Yan, Quantum transport from the perspective of quantum open systems, Phys. Lett. A 357(6), 449 (2006)
CrossRef ADS Google scholar
[35]
J. S. Jin, J. Li, Y. Liu, X. Q. Li, and Y. J. Yan, Improved master equation approach to quantum transport: From Born to self-consistent Born approximation, J. Chem. Phys. 140(24), 244111 (2014)
CrossRef ADS Google scholar
[36]
D. Hou, S. K. Wang, R. L. Wang, L. Z. Ye, R. X. Xu, X. Zheng, and Y. J. Yan, Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers, J. Chem. Phys. 142(10), 104112 (2015)
CrossRef ADS Google scholar
[37]
Y. Tanimura and P. G. Wolynes, Quantum and classical Fokker-Planck equations for a Guassian–Markovian noise bath, Phys. Rev. A 43(8), 4131 (1991)
CrossRef ADS Google scholar
[38]
X. Q. Li and Y. J. Yan, Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nanoelectronic devices, Phys. Rev. B 75(7), 075114 (2007)
CrossRef ADS Google scholar
[39]
Y. Tanimura, Real-time and imaginary-time quantum hierarchal Fokker–Planck equations, J. Chem. Phys. 142(14), 144110 (2015)
CrossRef ADS Google scholar
[40]
L. H. Ryder, Quantum Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 1996
CrossRef ADS Google scholar
[41]
H. D. Zhang, J. Xu, R. X. Xu, and Y. J. Yan, Modified Zusman qquation for quantum solvation dynamics and rate processes, in: Reaction Rate Constant Computations: Theories and Applications, London: edited by K.-L. Han and T.-S. Chu, pp. 319–336, Ch. 13, RSC Theoretical and Computational Chemistry Series No.6, 2014, http://dx.doi.org/10.1039/9781849737753-00319
CrossRef ADS Google scholar
[42]
X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic electronic response of a quantum dot driven by time-dependent voltage, J. Chem. Phys. 129(18), 184112 (2008)
CrossRef ADS Google scholar
[43]
X. Zheng, J. S. Jin, and Y. J. Yan, Dynamic Coulomb blockade in single-lead quantum dots, New J. Phys. 10(9), 093016 (2008)
CrossRef ADS Google scholar
[44]
X. Zheng, J. Y. Luo, J. S. Jin, and Y. J. Yan, Complex non-Markovian effect on time-dependent quantum transport, J. Chem. Phys. 130(12), 124508 (2009)
CrossRef ADS Google scholar
[45]
F. Jiang, J. S. Jin, S. K. Wang, and Y. J. Yan, Inelastic electron transport through mesoscopic systems: Heating versus cooling and sequential tunneling versus cotunneling processes, Phys. Rev. B 85(24), 245427 (2012)
CrossRef ADS Google scholar
[46]
S. K. Wang, X. Zheng, J. S. Jin, and Y. J. Yan, Hierarchical Liouville-space approach to nonequilibrium dynamic properties of quantum impurity systems, Phys. Rev. B 88(3), 035129 (2013)
CrossRef ADS Google scholar
[47]
X. Zheng, Y. J. Yan, and M. Di Ventra, Kondo memory in driven strongly correlated quantum dots, Phys. Rev. Lett. 111(8), 086601 (2013)
CrossRef ADS Google scholar
[48]
L. Z. Ye, D. Hou, R. L. Wang, D. W. Cao, X. Zheng, and Y. J. Yan, Thermopower of few-electron quantum dots with Kondo correlations, Phys. Rev. B 90(16), 165116 (2014)
CrossRef ADS Google scholar
[49]
Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems, Phys. Rev. Lett. 109(26), 266403 (2012)
CrossRef ADS Google scholar
[50]
D. Hou, R. Wang, X. Zheng, N. H. Tong, J. H. Wei, and Y. J. Yan, Hierarchical equations of motion for impurity solver in dynamical mean-field theory, Phys. Rev. B 90(4), 045141 (2014)
CrossRef ADS Google scholar
[51]
T. Ozaki, Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations, Phys. Rev. B 75(3), 035123 (2007)
CrossRef ADS Google scholar
[52]
P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124(1), 41 (1961)
CrossRef ADS Google scholar
[53]
Y. Meir, N. S. Wingreen, and P. A. Lee, Low-temperature transport through a quantum dot: The Anderson model out of equilibrium, Phys. Rev. Lett. 70(17), 2601 (1993)
CrossRef ADS Google scholar
[54]
J. Xu, R. X. Xu, D. Abramavicius, H. D. Zhang, and Y. J. Yan, Advancing hierarchical equations of motion for efficient evaluation of coherent two-dimensional spectroscopy, Chin. J. Chem. Phys. 24(5), 497 (2011)
CrossRef ADS Google scholar
[55]
J. Xu, H. D. Zhang, R. X. Xu, and Y. J. Yan, Correlated driving and dissipation in two-dimensional spectroscopy, J. Chem. Phys. 138(2), 024106 (2013)
CrossRef ADS Google scholar
[56]
R. W. Freund and N. M. Nachtigal, QMR: A quasiminimal residual method for non-Hermitian linear systems, Numer. Math. 60(1), 315 (1991)
CrossRef ADS Google scholar
[57]
R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput. 14(2), 470 (1993)
CrossRef ADS Google scholar
[58]
G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)
CrossRef ADS Google scholar
[59]
Y. Mo, R. X. Xu, P. Cui, and Y. J. Yan, Correlation and response functions with non-Markovian dissipation: A reduced Liouville-space theory, J. Chem. Phys. 122(8), 084115 (2005)
CrossRef ADS Google scholar
[60]
Y. X. Cheng, W. J. Hou, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, Time-dependent transport through quantum-impurity systems with Kondo resonance, New J. Phys. 17(3), 033009 (2015)
CrossRef ADS Google scholar
[61]
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)
CrossRef ADS Google scholar
[62]
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd Ed., Berlin: Springer, 2007
[63]
A. Croy and U. Saalmann, Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices, Phys. Rev. B 80(24), 245311 (2009)
CrossRef ADS Google scholar
[64]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef ADS Google scholar
[65]
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
CrossRef ADS Google scholar
[66]
K. G. Wilson, The renormalization group: Critical phenomena and Kondo problem, Rev. Mod. Phys. 47(4), 773 (1975)
CrossRef ADS Google scholar
[67]
R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormalization group method for quantum impurity systems, Rev. Mod. Phys. 80(2), 395 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(540 KB)

Accesses

Citations

Detail

Sections
Recommended

/