Interface-facilitated energy transport in coupled Frenkel–Kontorova chains

Rui-Xia Su, Zong-Qiang Yuan, Jun Wang, Zhi-Gang Zheng

PDF(415 KB)
PDF(415 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 114401. DOI: 10.1007/s11467-015-0548-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Interface-facilitated energy transport in coupled Frenkel–Kontorova chains

Author information +
History +

Abstract

The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.

Keywords

interface couplings / energy transport / heat conduction / phonon-phonon scattering / Frenkel–Kontorova (FK) chains / excited phonon modes / phonon spectral energy density

Cite this article

Download citation ▾
Rui-Xia Su, Zong-Qiang Yuan, Jun Wang, Zhi-Gang Zheng. Interface-facilitated energy transport in coupled Frenkel–Kontorova chains. Front. Phys., 2016, 11(2): 114401 https://doi.org/10.1007/s11467-015-0548-z

References

[1]
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
CrossRef ADS Google scholar
[2]
M. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, Effects of chemical bonding on heat transport across interfaces, Nat. Mater. 11(6), 502 (2012)
CrossRef ADS Google scholar
[3]
C. Yan, J. Cho, and J. Ahn, Graphene-based flexible and stretchable thin film transistors, Nanoscale 4(16), 4870 (2012)
CrossRef ADS Google scholar
[4]
G. J. Hu and B. Y. Cao, Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling, J. Appl. Phys. 14(22), 224308 (2013)
CrossRef ADS Google scholar
[5]
R. Guo and B. Huang, Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation, Sci. Rep. 5, 9579 (2015)
CrossRef ADS Google scholar
[6]
R. Guo, X. Wang, and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects, Sci. Rep. 5, 7806 (2015)
CrossRef ADS Google scholar
[7]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef ADS Google scholar
[8]
N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
CrossRef ADS Google scholar
[9]
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef ADS Google scholar
[10]
N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
CrossRef ADS Google scholar
[11]
Z. Liu and B. Li, Heat conduction in simple networks: The effect of interchain coupling, Phys. Rev. E 76(5), 051118 (2007)
CrossRef ADS Google scholar
[12]
Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
CrossRef ADS Google scholar
[13]
E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6(1), 19 (2013)
CrossRef ADS Google scholar
[14]
H. P. Li and R. Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene, Europhys. Lett. 99(3), 36001 (2012)
CrossRef ADS Google scholar
[15]
Q. X. Pei, Y. W. Zhang, Z. D. Sha, and V. B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study, J. Appl. Phys. 114(3), 033526 (2013)
CrossRef ADS Google scholar
[16]
J. Shiomi and S. Maruyama, Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes, Jpn. J. Appl. Phys. 47(4), 2005 (2008)
CrossRef ADS Google scholar
[17]
J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59(4), R2514 (1999)
CrossRef ADS Google scholar
[18]
S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
CrossRef ADS Google scholar
[19]
J. Shiomi and S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B 73(20), 205420 (2006)
CrossRef ADS Google scholar
[20]
C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842 (2005)
CrossRef ADS Google scholar
[21]
B. Y. Cao and Q. W. Hou, C. Bing-Yang, and H. Quan-Wen, Thermal conductivity of carbon nanotubes embedded in solids, Chin. Phys. Lett. 25(4), 1392 (2008)
CrossRef ADS Google scholar
[22]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef ADS Google scholar
[23]
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef ADS Google scholar
[24]
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
CrossRef ADS Google scholar
[25]
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
CrossRef ADS Google scholar
[26]
Z. Q. Ye, B. Y. Cao, W. J. Yao, T. Feng, and X. Ruan, Spectral phonon thermal properties in graphene nanoribbons, Carbon 93, 915 (2015)
CrossRef ADS Google scholar
[27]
R. Guo and B. Huang, Thermal transport in nanoporous Si: Anisotropy and junction effects, Int. J. Heat Mass Transfer 77, 131 (2014)
CrossRef ADS Google scholar
[28]
X. Yan, Y. Xiao, and Z. Li, Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305 (2006)
CrossRef ADS Google scholar
[29]
D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett. 99(25), 255502 (2007)
CrossRef ADS Google scholar
[30]
Z. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B 84(16), 165418 (2011)
CrossRef ADS Google scholar
[31]
Z. Guo, D. Zhang, and X. Gong, Manipulating thermal conductivity through substrate coupling, Phys. Rev. B 84(7), 075470 (2011)
CrossRef ADS Google scholar
[32]
Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)
CrossRef ADS Google scholar
[33]
X. Zhang, H. Bao, and M. Hu, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale 7(14), 6014 (2015)
CrossRef ADS Google scholar
[34]
J. Yang, Y. Yang, S. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nanotechnol. 7(2), 91 (2012)
CrossRef ADS Google scholar
[35]
O. Braun and Y. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1), 1 (1998)
CrossRef ADS Google scholar
[36]
B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
CrossRef ADS Google scholar
[37]
L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
CrossRef ADS Google scholar
[38]
L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
CrossRef ADS Google scholar
[39]
B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
CrossRef ADS Google scholar
[40]
J. Wang and Z. G. Zheng, Heat conduction and reversed thermal diode: The interface effect, Phys. Rev. E 81(1), 011114 (2010)
CrossRef ADS Google scholar
[41]
E. Díaz, R. Gutierrez, and G. Cuniberti, Heat transport and thermal rectification in molecular junctions: A minimal model approach,Phys. Rev. B 84(14), 144302 (2011)
CrossRef ADS Google scholar
[42]
B. Q. Ai and B. Hu, Heat conduction in deformable Frenkel–Kontorova lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(1), 011131 (2011)
CrossRef ADS Google scholar
[43]
W. R. Zhong, Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure, Phys. Rev. E 81(6), 061131 (2010)
CrossRef ADS Google scholar
[44]
B. Hu, D. He, Y. Zhang, and L. Yang, Asymmetric heat conduction in the Frenkel–Kontorova model, Korean Phys. Soc. 50, 166 (2007)
CrossRef ADS Google scholar
[45]
D. He, B. Ai, H. K. Chan, and B. Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(4), 041131 (2010)
CrossRef ADS Google scholar
[46]
J. Tekić, D. He, and B. Hu, Noise effects in the ac-driven Frenkel–Kontorova model, Phys. Rev. E 79(3), 036604 (2009)
CrossRef ADS Google scholar
[47]
J. Thomas, J. E. Turney, R. Iutzi, C. Amon, and A. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B 81(8), 081411 (2010)
CrossRef ADS Google scholar
[48]
L. Zhu and B. Li, Low thermal conductivity in ultrathin carbon nanotube (2, 1),Sci. Rep. 4, 4917 (2014)
CrossRef ADS Google scholar
[49]
N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett. 103(12), 125902 (2009)
CrossRef ADS Google scholar
[50]
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
CrossRef ADS Google scholar
[51]
W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31(3), 1695 (1985)
CrossRef ADS Google scholar
[52]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge: Cambridge University Press, 1992
[53]
A. V. Savin and O. V. Gendelman, Heat conduction in one-dimensional lattices with on-site potential, Phys. Rev. E 67(4), 041205 (2003)
CrossRef ADS Google scholar
[54]
C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett. 84(10), 2144 (2000)
CrossRef ADS Google scholar
[55]
Q. W. Hou, B. Y. Cao, and Z. Y. Guo, Thermal conductivity of carbon nanotube: From ballistic to diffusive transport, Acta Physica Sinica 58(11), 7809 (2009) (in Chinese)
[56]
A. Jain, Y. J. Yu, and A. J. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B 87(19), 195301 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(415 KB)

Accesses

Citations

Detail

Sections
Recommended

/