Interface-facilitated energy transport in coupled Frenkel–Kontorova chains
Rui-Xia Su, Zong-Qiang Yuan, Jun Wang, Zhi-Gang Zheng
Interface-facilitated energy transport in coupled Frenkel–Kontorova chains
The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.
interface couplings / energy transport / heat conduction / phonon-phonon scattering / Frenkel–Kontorova (FK) chains / excited phonon modes / phonon spectral energy density
[1] |
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
CrossRef
ADS
Google scholar
|
[2] |
M. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, Effects of chemical bonding on heat transport across interfaces, Nat. Mater. 11(6), 502 (2012)
CrossRef
ADS
Google scholar
|
[3] |
C. Yan, J. Cho, and J. Ahn, Graphene-based flexible and stretchable thin film transistors, Nanoscale 4(16), 4870 (2012)
CrossRef
ADS
Google scholar
|
[4] |
G. J. Hu and B. Y. Cao, Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling, J. Appl. Phys. 14(22), 224308 (2013)
CrossRef
ADS
Google scholar
|
[5] |
R. Guo and B. Huang, Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation, Sci. Rep. 5, 9579 (2015)
CrossRef
ADS
Google scholar
|
[6] |
R. Guo, X. Wang, and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects, Sci. Rep. 5, 7806 (2015)
CrossRef
ADS
Google scholar
|
[7] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef
ADS
Google scholar
|
[8] |
N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
CrossRef
ADS
Google scholar
|
[9] |
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef
ADS
Google scholar
|
[10] |
N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
CrossRef
ADS
Google scholar
|
[11] |
Z. Liu and B. Li, Heat conduction in simple networks: The effect of interchain coupling, Phys. Rev. E 76(5), 051118 (2007)
CrossRef
ADS
Google scholar
|
[12] |
Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
CrossRef
ADS
Google scholar
|
[13] |
E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6(1), 19 (2013)
CrossRef
ADS
Google scholar
|
[14] |
H. P. Li and R. Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene, Europhys. Lett. 99(3), 36001 (2012)
CrossRef
ADS
Google scholar
|
[15] |
Q. X. Pei, Y. W. Zhang, Z. D. Sha, and V. B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study, J. Appl. Phys. 114(3), 033526 (2013)
CrossRef
ADS
Google scholar
|
[16] |
J. Shiomi and S. Maruyama, Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes, Jpn. J. Appl. Phys. 47(4), 2005 (2008)
CrossRef
ADS
Google scholar
|
[17] |
J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59(4), R2514 (1999)
CrossRef
ADS
Google scholar
|
[18] |
S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
CrossRef
ADS
Google scholar
|
[19] |
J. Shiomi and S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B 73(20), 205420 (2006)
CrossRef
ADS
Google scholar
|
[20] |
C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842 (2005)
CrossRef
ADS
Google scholar
|
[21] |
B. Y. Cao and Q. W. Hou, C. Bing-Yang, and H. Quan-Wen, Thermal conductivity of carbon nanotubes embedded in solids, Chin. Phys. Lett. 25(4), 1392 (2008)
CrossRef
ADS
Google scholar
|
[22] |
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef
ADS
Google scholar
|
[23] |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef
ADS
Google scholar
|
[24] |
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
CrossRef
ADS
Google scholar
|
[25] |
K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
CrossRef
ADS
Google scholar
|
[26] |
Z. Q. Ye, B. Y. Cao, W. J. Yao, T. Feng, and X. Ruan, Spectral phonon thermal properties in graphene nanoribbons, Carbon 93, 915 (2015)
CrossRef
ADS
Google scholar
|
[27] |
R. Guo and B. Huang, Thermal transport in nanoporous Si: Anisotropy and junction effects, Int. J. Heat Mass Transfer 77, 131 (2014)
CrossRef
ADS
Google scholar
|
[28] |
X. Yan, Y. Xiao, and Z. Li, Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305 (2006)
CrossRef
ADS
Google scholar
|
[29] |
D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett. 99(25), 255502 (2007)
CrossRef
ADS
Google scholar
|
[30] |
Z. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B 84(16), 165418 (2011)
CrossRef
ADS
Google scholar
|
[31] |
Z. Guo, D. Zhang, and X. Gong, Manipulating thermal conductivity through substrate coupling, Phys. Rev. B 84(7), 075470 (2011)
CrossRef
ADS
Google scholar
|
[32] |
Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)
CrossRef
ADS
Google scholar
|
[33] |
X. Zhang, H. Bao, and M. Hu, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale 7(14), 6014 (2015)
CrossRef
ADS
Google scholar
|
[34] |
J. Yang, Y. Yang, S. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nanotechnol. 7(2), 91 (2012)
CrossRef
ADS
Google scholar
|
[35] |
O. Braun and Y. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1), 1 (1998)
CrossRef
ADS
Google scholar
|
[36] |
B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
CrossRef
ADS
Google scholar
|
[37] |
L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
CrossRef
ADS
Google scholar
|
[38] |
L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
CrossRef
ADS
Google scholar
|
[39] |
B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
CrossRef
ADS
Google scholar
|
[40] |
J. Wang and Z. G. Zheng, Heat conduction and reversed thermal diode: The interface effect, Phys. Rev. E 81(1), 011114 (2010)
CrossRef
ADS
Google scholar
|
[41] |
E. Díaz, R. Gutierrez, and G. Cuniberti, Heat transport and thermal rectification in molecular junctions: A minimal model approach,Phys. Rev. B 84(14), 144302 (2011)
CrossRef
ADS
Google scholar
|
[42] |
B. Q. Ai and B. Hu, Heat conduction in deformable Frenkel–Kontorova lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(1), 011131 (2011)
CrossRef
ADS
Google scholar
|
[43] |
W. R. Zhong, Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure, Phys. Rev. E 81(6), 061131 (2010)
CrossRef
ADS
Google scholar
|
[44] |
B. Hu, D. He, Y. Zhang, and L. Yang, Asymmetric heat conduction in the Frenkel–Kontorova model, Korean Phys. Soc. 50, 166 (2007)
CrossRef
ADS
Google scholar
|
[45] |
D. He, B. Ai, H. K. Chan, and B. Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(4), 041131 (2010)
CrossRef
ADS
Google scholar
|
[46] |
J. Tekić, D. He, and B. Hu, Noise effects in the ac-driven Frenkel–Kontorova model, Phys. Rev. E 79(3), 036604 (2009)
CrossRef
ADS
Google scholar
|
[47] |
J. Thomas, J. E. Turney, R. Iutzi, C. Amon, and A. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B 81(8), 081411 (2010)
CrossRef
ADS
Google scholar
|
[48] |
L. Zhu and B. Li, Low thermal conductivity in ultrathin carbon nanotube (2, 1),Sci. Rep. 4, 4917 (2014)
CrossRef
ADS
Google scholar
|
[49] |
N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett. 103(12), 125902 (2009)
CrossRef
ADS
Google scholar
|
[50] |
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
CrossRef
ADS
Google scholar
|
[51] |
W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31(3), 1695 (1985)
CrossRef
ADS
Google scholar
|
[52] |
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge: Cambridge University Press, 1992
|
[53] |
A. V. Savin and O. V. Gendelman, Heat conduction in one-dimensional lattices with on-site potential, Phys. Rev. E 67(4), 041205 (2003)
CrossRef
ADS
Google scholar
|
[54] |
C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett. 84(10), 2144 (2000)
CrossRef
ADS
Google scholar
|
[55] |
Q. W. Hou, B. Y. Cao, and Z. Y. Guo, Thermal conductivity of carbon nanotube: From ballistic to diffusive transport, Acta Physica Sinica 58(11), 7809 (2009) (in Chinese)
|
[56] |
A. Jain, Y. J. Yu, and A. J. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B 87(19), 195301 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |