Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

Xiao-Yu Hu (胡小玉), Chao-Ping Wei (魏朝平), Ya-Fei Yu (於亚飞), Zhi-Ming Zhang(张智明)

PDF(342 KB)
PDF(342 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 114203. DOI: 10.1007/s11467-015-0547-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

Author information +
History +

Abstract

We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

Keywords

phase sensitivity / SU(1,1) interferometer / displaced squeezed vacuum state / optimal squeezing fraction

Cite this article

Download citation ▾
Xiao-Yu Hu (胡小玉), Chao-Ping Wei (魏朝平), Ya-Fei Yu (於亚飞), Zhi-Ming Zhang(张智明). Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light. Front. Phys., 2016, 11(3): 114203 https://doi.org/10.1007/s11467-015-0547-0

References

[1]
B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)
CrossRef ADS Google scholar
[2]
R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Progress in Optics60, 345 (2015)
CrossRef ADS Google scholar
[3]
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
CrossRef ADS Google scholar
[4]
C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)
CrossRef ADS Google scholar
[5]
R. S. Bondurant and J. H. Shapiro, Squeezed states in phase-sensing interferometers, Phys. Rev. D 30(12), 2548 (1984)
CrossRef ADS Google scholar
[6]
M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71(9), 1355 (1993)
CrossRef ADS Google scholar
[7]
O. Steuernagel and S. Scheel, Approaching the Heisenberg limit with two-mode squeezed states, J. Opt. B 6(3), S66 (2004)
CrossRef ADS Google scholar
[8]
H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49(14-15), 2325 (2002)
CrossRef ADS Google scholar
[9]
J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)
CrossRef ADS Google scholar
[10]
C. C. Gerry, Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime, Phys. Rev. A 61(4), 043811 (2000)
CrossRef ADS Google scholar
[11]
C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry, Phys. Rev. A 66(1), 013804 (2002)
CrossRef ADS Google scholar
[12]
G. A. Durkin and J. P. Dowling, Local and global distinguishability in quantum interferometry, Phys. Rev. Lett. 99(7), 070801 (2007)
CrossRef ADS Google scholar
[13]
M. A. Rubin and S. Kaushik, Loss-induced limits to phase measurement precision with maximally entangled states, Phys. Rev. A 75(5), 053805 (2007)
CrossRef ADS Google scholar
[14]
G. Gilbert, M. Hamrick, and Y. S. Weinstein, Practical quantum interferometry using photonic N00N states, Proc. SPIE 6573, 65730K (2007)
CrossRef ADS Google scholar
[15]
K. Jiang, C. J. Brignac, Y. Weng, M. B. Kim, H. Lee, and J. P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss, Phys. Rev. A 86(1), 013826 (2012)
CrossRef ADS Google scholar
[16]
S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Entangled Fock states for robust quantum optical metrology, imaging, and sensing, Phys. Rev. A 78(6), 063828 (2008)
CrossRef ADS Google scholar
[17]
J. Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A 65(5), 053818 (2002)
CrossRef ADS Google scholar
[18]
M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using a laser power source, Phys. Rev. Lett. 111(17), 173601 (2013)
CrossRef ADS Google scholar
[19]
B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33(6), 4033 (1986)
CrossRef ADS Google scholar
[20]
W. N. Plick, J. P. Dowling, and G. S. Agarwal, Coherent-light-boosted, sub-shot noise, quantum interferometry, New J. Phys. 12(8), 083014 (2010)
CrossRef ADS Google scholar
[21]
D. Li, C. H. Yuan, Z. Y. Ou, and W. Zhang, The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)
CrossRef ADS Google scholar
[22]
A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73(3), 033821 (2006)
CrossRef ADS Google scholar
[23]
O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88(4), 040102(R) (2013)
CrossRef ADS Google scholar
[24]
Z. Y. Ou, Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer, Phys. Rev. A 85(2), 023815 (2012)
CrossRef ADS Google scholar
[25]
A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, Effect of losses on the performance of an SU(1,1) interferometer, Phys. Rev. A 86(2), 023844 (2012)
CrossRef ADS Google scholar
[26]
W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, Parity detection in quantum optical metrology without number-resolving detectors, New J. Phys. 12(11), 113025 (2010)
CrossRef ADS Google scholar
[27]
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
CrossRef ADS Google scholar
[28]
T. Ono and H. F. Hofmann, Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum, Phys Rev. A 81(3), 033819 (2010)
CrossRef ADS Google scholar
[29]
Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum Fisher information of entangled coherent states in the presence of photon loss, Phys. Rev. A 88(4), 043832 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(342 KB)

Accesses

Citations

Detail

Sections
Recommended

/