Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

Hu (胡小玉)Xiao-Yu , Wei (魏朝平)Chao-Ping , Yu (於亚飞)Ya-Fei , Zhang(张智明)Zhi-Ming

Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 114203

PDF (342KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 114203 DOI: 10.1007/s11467-015-0547-0
RESEARCH ARTICLE

Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light

Author information +
History +
PDF (342KB)

Abstract

We study the phase sensitivity of an SU(1,1) interferometer with two input beams in the displaced squeezed vacuum state and the coherent state, respectively. We find that there exists an optimal squeezing fraction of the displaced squeezed vacuum state that optimizes the phase sensitivity. We also examine the effects of some factors, including the loss, mean photon number of the input beams and amplitude gain of the optical parameter amplifiers, on the optimal squeezing fraction so that we can choose the optimal values to enhance the phase sensitivity.

Keywords

phase sensitivity / SU(1,1) interferometer / displaced squeezed vacuum state / optimal squeezing fraction

Cite this article

Download citation ▾
Hu (胡小玉)Xiao-Yu, Wei (魏朝平)Chao-Ping, Yu (於亚飞)Ya-Fei, Zhang(张智明)Zhi-Ming. Enhanced phase sensitivity of an SU(1,1) interferometer with displaced squeezed vacuum light. Front. Phys., 2016, 11(3): 114203 DOI:10.1007/s11467-015-0547-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. C. Sanders and G. J. Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944 (1995)

[2]

R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Progress in Optics60, 345 (2015)

[3]

C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)

[4]

C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)

[5]

R. S. Bondurant and J. H. Shapiro, Squeezed states in phase-sensing interferometers, Phys. Rev. D 30(12), 2548 (1984)

[6]

M. J. Holland and K. Burnett, Interferometric detection of optical phase shifts at the Heisenberg limit, Phys. Rev. Lett. 71(9), 1355 (1993)

[7]

O. Steuernagel and S. Scheel, Approaching the Heisenberg limit with two-mode squeezed states, J. Opt. B 6(3), S66 (2004)

[8]

H. Lee, P. Kok, and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49(14-15), 2325 (2002)

[9]

J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)

[10]

C. C. Gerry, Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime, Phys. Rev. A 61(4), 043811 (2000)

[11]

C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear interferometer as a resource for maximally entangled photonic states: Application to interferometry, Phys. Rev. A 66(1), 013804 (2002)

[12]

G. A. Durkin and J. P. Dowling, Local and global distinguishability in quantum interferometry, Phys. Rev. Lett. 99(7), 070801 (2007)

[13]

M. A. Rubin and S. Kaushik, Loss-induced limits to phase measurement precision with maximally entangled states, Phys. Rev. A 75(5), 053805 (2007)

[14]

G. Gilbert, M. Hamrick, and Y. S. Weinstein, Practical quantum interferometry using photonic N00N states, Proc. SPIE 6573, 65730K (2007)

[15]

K. Jiang, C. J. Brignac, Y. Weng, M. B. Kim, H. Lee, and J. P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss, Phys. Rev. A 86(1), 013826 (2012)

[16]

S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Entangled Fock states for robust quantum optical metrology, imaging, and sensing, Phys. Rev. A 78(6), 063828 (2008)

[17]

J. Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A 65(5), 053818 (2002)

[18]

M. D. Lang and C. M. Caves, Optimal quantum-enhanced interferometry using a laser power source, Phys. Rev. Lett. 111(17), 173601 (2013)

[19]

B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1,1) interferometers, Phys. Rev. A 33(6), 4033 (1986)

[20]

W. N. Plick, J. P. Dowling, and G. S. Agarwal, Coherent-light-boosted, sub-shot noise, quantum interferometry, New J. Phys. 12(8), 083014 (2010)

[21]

D. Li, C. H. Yuan, Z. Y. Ou, and W. Zhang, The phase sensitivity of an SU(1,1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)

[22]

A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73(3), 033821 (2006)

[23]

O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, Quantum parameter estimation using general single-mode Gaussian states, Phys. Rev. A 88(4), 040102(R) (2013)

[24]

Z. Y. Ou, Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer, Phys. Rev. A 85(2), 023815 (2012)

[25]

A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, Effect of losses on the performance of an SU(1,1) interferometer, Phys. Rev. A 86(2), 023844 (2012)

[26]

W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, Parity detection in quantum optical metrology without number-resolving detectors, New J. Phys. 12(11), 113025 (2010)

[27]

U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)

[28]

T. Ono and H. F. Hofmann, Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum, Phys Rev. A 81(3), 033819 (2010)

[29]

Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum Fisher information of entangled coherent states in the presence of photon loss, Phys. Rev. A 88(4), 043832 (2013)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (342KB)

1151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/