Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces
Liang Yin, Hai-Feng Zhang, Shu-Yuan Shi, Yao Lu, Yang Wang, Xiao-Wei Liu
Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces
This paper proposes a novel bubble model to analyze drag reduction. The relationship between the slip length and air bubble height is discussed. The numerical relationship between the surface contact angle and slip length is obtained using the solid-liquid contact ratio in the Cassie equation. The surface drag reduction ratio increases by 40% at low velocities when the solid liquid contact ratio decreases from 90% to 10%. An experimental setup to study liquid/solid friction drag is reported. The drag reduction ratio for the superhydrophobic surface tested experimentally is 30%–35% at low velocities. These results are similar to the simulation results obtained at low velocities.
drag reduction / air bubble / slip length / fraction / superhydrophobic
[1] |
Y. L. Zhang, H. Xia, E. Kim, and H. B. Sun, Recent developments in superhydrophobic surfaces with unique structural and functional properties, Soft Matter 8(44), 11217 (2012)
CrossRef
ADS
Google scholar
|
[2] |
C. H. Xue, S. T. Jia, J. Zhang, and J. Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: An overview, Sci. Technol. Adv. Mater. 11(3), 033002 (2010)
CrossRef
ADS
Google scholar
|
[3] |
G. McHale, M. Newton, and N. Shirtcliffe, Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties, Soft Matter 6(4), 714 (2010)
CrossRef
ADS
Google scholar
|
[4] |
Y. Zhao, Y. Song, W. Song, W. Liang, X. Jiang, Z. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef
ADS
Google scholar
|
[5] |
N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic andphotoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
CrossRef
ADS
Google scholar
|
[6] |
P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang, Z. Luo, N. Yi, D. Zhang, and T. Deng, Bioinspired engineering of thermal materials, Adv. Mater. 27(3), 428 (2015)
CrossRef
ADS
Google scholar
|
[7] |
J. Wang, M. Liu, R. Ma, Q. Wang, and L. Jiang, In situ wetting state transition on micro- and nanostructured surfaces at high temperature, ACS Appl. Mater. Interfaces 6(17), 15198 (2014)
CrossRef
ADS
Google scholar
|
[8] |
U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Bioinspired structural materials, Nat. Mater. 14(1), 23 (2014)
CrossRef
ADS
Google scholar
|
[9] |
W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salviniaparadox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22(21), 2325 (2010)
CrossRef
ADS
Google scholar
|
[10] |
S. Lyu, D. C. Nguyen, D. Kim, W. Hwang, and B. Yoon, Experimental drag reduction study of super-hydrophobic surface with dual-scale structures, Appl. Surf. Sci. 286, 206 (2013)
CrossRef
ADS
Google scholar
|
[11] |
J. Cui, W. Li, and W. Lam, Numerical investigation on drag reduction with superhydrophobic surfaces by lattice-Boltzmann method, Comput. Math. Appl. 61(12), 3678 (2011)
CrossRef
ADS
Google scholar
|
[12] |
Y. Gan, A. Xu, G. Zhang, and Y. Li, Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions, Front. Phys. 7(4), 481 (2012)
CrossRef
ADS
Google scholar
|
[13] |
K. Fukagata, N. Kasagi, and P. Koumoutsakos, A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces, Phys. Fluids 18(5), 051703 (2006)
CrossRef
ADS
Google scholar
|
[14] |
E. Lauga and H. A. Stone, Effective slip in pressure-driven Stokes flow, J. Fluid Mech. 489, 55 (2003)
CrossRef
ADS
Google scholar
|
[15] |
J. Davies, D. Maynes, B. W. Webb, and B. Woolford, Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids 18(8), 087110 (2006)
CrossRef
ADS
Google scholar
|
[16] |
Y. P. Cheng, C. J. Teo, and B. C. Khoo, Microchannel flows with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids 21(12), 122004 (2009)
CrossRef
ADS
Google scholar
|
[17] |
J. Yang, J. Duan, D. Fornasiero, and J. Ralston, Very small bubble formation at the solid-water interface, J. Phys. Chem. B 107(25), 6139 (2003)
CrossRef
ADS
Google scholar
|
[18] |
J. Wang, H. Chen, T. Sui, A. Li, and D. Chen, Investigation on hydrophobicity of lotus leaf: Experiment and theory, Plant Sci. 176(5), 687 (2009)
CrossRef
ADS
Google scholar
|
[19] |
S. R. German, X. Wu, H. An, V. S. J. Craig, T. L. Mega, and X. Zhang, Interfacial nanobubbles are leaky: Permeability of the gas/water interface, ACS Nano 8(6), 6193 (2014)
CrossRef
ADS
Google scholar
|
[20] |
X. Zhang, A. Quinn, and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir 24(9), 4756 (2008)
CrossRef
ADS
Google scholar
|
[21] |
J. Wang, B. Wang, and D. Chen, Underwater drag reduction by gas, Friction 2(4), 295 (2014)
CrossRef
ADS
Google scholar
|
[22] |
K. Mohanarangam, S. C. P. Cheung, J. Y. Tu, and L. Chen, Numerical simulation of micro-bubble drag reduction using population balance model, Ocean Eng. 36(11), 863 (2009)
CrossRef
ADS
Google scholar
|
[23] |
P. P. Modi and S. Jayanti, Pressure losses and flow maldistribution in ducts with sharp bends, Chem. Eng. Res. Des. 82(3), 321 (2004)
CrossRef
ADS
Google scholar
|
[24] |
B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Superstability of surface nanobubbles, Phys. Rev. Lett. 98(20), 204502 (2007)
CrossRef
ADS
Google scholar
|
[25] |
P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels, Phys. Rev. Lett. 97(15), 156104 (2006)
CrossRef
ADS
Google scholar
|
[26] |
A. Steinberger, C. Cottin-Bizonne, P. Kleimann, and E. Charlaix, High friction on a bubble mattress, Nat. Mater. 6(9), 665 (2007)
CrossRef
ADS
Google scholar
|
[27] |
C. Lee and C. J. Kim, Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir 25(21), 12812 (2009)
CrossRef
ADS
Google scholar
|
[28] |
J. Hyväluoma and J. Harting, Slip flow over structured surfaces with entrapped microbubbles, Phys. Rev. Lett. 100(24), 246001 (2008)
CrossRef
ADS
Google scholar
|
[29] |
S. Richardson, No-slip boundary condition, J. Fluid Mech. 59(04), 707 (1973)
CrossRef
ADS
Google scholar
|
[30] |
K. M. Jansons, Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition, Phys. Fluids 31(1), 15 (1988)
CrossRef
ADS
Google scholar
|
[31] |
Y. Wang, X. W. Liu, H. F. Zhang, and Z. P. Zhou, Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water, RSC Advances 5(24), 18909 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |