Potential distribution around a test charge in a positive dust-electron plasma

S. Ali

PDF(300 KB)
PDF(300 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 115201. DOI: 10.1007/s11467-015-0545-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Potential distribution around a test charge in a positive dust-electron plasma

Author information +
History +

Abstract

The electrostatic potential caused by a test-charge particle in a positive dust-electron plasma is studied, accounting for the dust-charge fluctuations associated with ultraviolet photoelectron and thermionic emissions. For this purpose, the set of Vlasov–Poisson equations coupled with the dust charging equation is solved by using the space–time Fourier transform technique. As a consequence, a modified dielectric response function is obtained for dust-acoustic waves in a positive dust-electron plasma. By imposing certain conditions on the velocity of the test charge, the electrostatic potential is decomposed into the Debye–Hückel (DH), wake-field (WF), and far-field (FF) potentials that are significantly modified in the limit of a large dust-charge relaxation rate both analytically and numerically. The results can be helpful for understanding dust crystallization/coagulation in twocomponent plasmas, where positively charged dust grains are present.

Keywords

dusty plasmas, dust charge fluctuations, positively charged dusty plasma, shielding and dynamical potentials

Cite this article

Download citation ▾
S. Ali. Potential distribution around a test charge in a positive dust-electron plasma. Front. Phys., 2016, 11(3): 115201 https://doi.org/10.1007/s11467-015-0545-2

References

[1]
T. Peter, Linearized potential of an ion moving through plasma, J. Plasma Phys. 44(02), 269 (1990)
CrossRef ADS Google scholar
[2]
T. Peter and J. Meyer-ter-Vehn, Energy loss of heavy ions in dense plasma (I): Linear and nonlinear Vlasov theory for the stopping power, Phys. Rev. A 43(4), 1998 (1991)
CrossRef ADS Google scholar
[3]
J. Neufeld and R. H. Ritchie, Passage of charged particles through plasma, Phys. Rev. 98(6), 1632 (1955)
CrossRef ADS Google scholar
[4]
J. R. Sanmartin and S. H. Lam, Far-Wake structure in Rarefield plasma flows past charged bodies, Phys. Fluids14(1), 62 (1971)
CrossRef ADS Google scholar
[5]
L. Chen, A. B. Langdon, and M. A. Lieberman, Shielding of moving test particles in warm, isotropic plasma, J. Plasma Phys. 9(03), 311 (1973)
CrossRef ADS Google scholar
[6]
M. Nambu, S. V. Vladimirov, and P. K. Shukla, Attractive forces between charged particulates in plasmas, Phys. Lett. A 203(1), 40 (1995)
CrossRef ADS Google scholar
[7]
S. V. Vladimirov and M. Nambu, Attraction of charged particulates in plasmas with finite flows, Phys. Rev. E 52(3), R2172 (1995)
CrossRef ADS Google scholar
[8]
M. Salimullah and M. Nambu, Crystallization in a magnetized and inhomogeneous dusty plasma with streaming ions, J. Phys. Soc. Jpn. 69(6), 1688 (2000)
CrossRef ADS Google scholar
[9]
M. Nambu, B. J. Saikia, and T. Hada, Wake potential around a test dust particulate in a magnetized plasma with streaming ions, J. Phys. Soc. Jpn. 70(5), 1175 (2001)
CrossRef ADS Google scholar
[10]
M. Nambu, three-dimensional wake potential due to ion cyclotron waves in a flowing magnetized plasma, Phys. Scr. T98, 130 (2002)
[11]
M. H. Nasim, Energy loss of charged projectiles in a dusty plasma, Ph.D. thesis, Quaid-i-Azam University, Islamabad, Pakistan, 1999
[12]
H. Ikezi, Coulomb solid of small particles in plasmas, Phys. Fluids 29(6), 1764 (1986)
CrossRef ADS Google scholar
[13]
J. H. Chu and I. Lin, Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas, Phys. Lett. A 72(25), 4009 (1994)
CrossRef ADS Google scholar
[14]
J. H. Chu, J. B. Du, and I. Lin, Coulomb solids and low-frequency fluctuations in RF dusty plasmas, J. Phys. D 27(2), 296 (1994)
CrossRef ADS Google scholar
[15]
H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Möhlmann, Plasma crystal: Coulomb crystallization in a dusty plasma, Phys. Rev. Lett. 73(5), 652 (1994)
CrossRef ADS Google scholar
[16]
Y. Hayashi and K. Tachibana, Observation of coulomb-crystal formation from carbon particles grown in a Methane plasma, Jpn. J. Appl. Phys. 33, L804 (1994)
CrossRef ADS Google scholar
[17]
A. Melzer, T. Trottenberg, and A. Piel, Experimental determination of the charge on dust particles forming Coulomb lattices, Phys. Lett. A 191(3-4), 301 (1994)
CrossRef ADS Google scholar
[18]
M. Nambu and H. Akama, Attractive potential between resonant electrons, Phys. Fluids 28(7), 2300 (1985)
CrossRef ADS Google scholar
[19]
N. N. Rao and P. K. Shukla, Nonlinear dust-acoustic waves with dust charge fluctuations, Planet. Space Sci. 42(3), 221 (1994)
CrossRef ADS Google scholar
[20]
J. X. Ma and P. K. Shukla, Compact dispersion relation for parametric instabilities of electromagnetic waves in dusty plasmas, Phys. Plasmas 1(5), 1506 (1995)
CrossRef ADS Google scholar
[21]
R. K. Varma, P. K. Shukla, and V. Krishan, Electrostatic oscillations in the presence of grain-charge perturbations in dusty plasmas, Phys. Rev. E 47(5), 3612 (1993)
CrossRef ADS Google scholar
[22]
P. K. Shukla, in: The Physics of Dusty Plasmas, edited by P. K. Shukla, D. A. Mendis, and V. W. Chow, Singapore: World Scientific, 1996
[23]
F. Melandsc, T. Aslaksen, and O. Havnes, A new damping effect for the dust-acoustic wave, Planet. Space Sci. 41(4), 321 (1993)
CrossRef ADS Google scholar
[24]
M. H. Nasim, P. K. Shukla, and G. Murtaza, Effect of dust charge fluctuations on energy loss of a test dust charged particulate in a dusty plasma, Phys. Plasmas 6(5), 1409 (1999)
CrossRef ADS Google scholar
[25]
M. H. Nasim, A. M. Mirza, G. Murtaza, and P. K. Shukla, Energy loss of a test charge in dusty plasmas: collective and individual particle contributions, Phys. Scr. 59(5), 379 (1999)
CrossRef ADS Google scholar
[26]
S. Ali, M. H. Nasim, and G. Murtaza, Effects of dust-charge fluctuations on the potential of an array of projectiles in a partially ionized dusty plasma, Phys. Plasmas 10(11), 4207 (2003)
CrossRef ADS Google scholar
[27]
M. Horanyi, G. E. Morfill, and E. Griin, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere, Nature 363(6425), 144 (1993)
CrossRef ADS Google scholar
[28]
O. Havnes, J. Trøim, T. Blix, W. Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen, First detection of charged dust particles in the Earth’s mesosphere, J. Geophys. Res. 101(A5), 10839 (1996)
CrossRef ADS Google scholar
[29]
V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samarian, and A. V. Chernyschev, Particle ordered structures in a strongly coupled classical thermal plasma, Phys. Rev. E 54(3), R2236 (1996)
CrossRef ADS Google scholar
[30]
A. A. Samarian, O. S. Vaulina, A. P. Nefedov, V. E. Fortov, B. W. James, and O. F. Petrov, Positively charged particles in dusty plasmas, Phys. Rev. E 64, 056407 (2001)
CrossRef ADS Google scholar
[31]
M. Rosenberg and D. A. Mendis, UV-induced Coulomb crystallization in a dusty gas, IEEE Trans. Plasma Sci. 23(2), 177 (1995)
CrossRef ADS Google scholar
[32]
P. K. Shukla and D. Resendes, Dust acoustic waves with dust charge fluctuations — revisited, Phys. Plasmas 7(5), 1614 (2000)
CrossRef ADS Google scholar
[33]
P. K. Shukla, Dust acoustic wave in a thermal dusty plasma, Phys. Rev. E 61, 7249 (2000)
CrossRef ADS Google scholar
[34]
S. Ghosh, Dust acoustic shock waves in two-component dusty plasma, New J. Phys. 5, 142 (2003)
CrossRef ADS Google scholar
[35]
M. Horanyi, B. Walch, S. Robertson, and D. Alexander, Electrostatic charging properties of Apollo 17 lunar dust, J. Geophys. Res. 103(E4), 8575 (1998)
CrossRef ADS Google scholar
[36]
C. K. Goertz, Dusty plasmas in the solar system, Rev. Geophys. 27(2), 271 (1989)
CrossRef ADS Google scholar
[37]
G. L. Delzanno, G. Lapenta, and M. Rosenberg, Attractive potential around a thermionically emitting microparticle, Phys. Rev. Lett. 92(3), 350021 (2004)
CrossRef ADS Google scholar
[38]
S. K. Paul, IJCIT 2, 25 (2012)
[39]
P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, U.K.: Institute of Physics Publishing Ltd., 2002
CrossRef ADS Google scholar
[40]
M. Sodha and S. Guha, Physics of Colloidal Plasmas, Adv. Plasma Phys. 4, 219 (1971)
[41]
M. Rosenberg, D. A. Mendis, and D. Sheenan, UV-induced Coulomb crystallization of dust grains in high-pressure gas, IEEE Trans. Plasma Sci. 24(6), 1422 (1996)
CrossRef ADS Google scholar
[42]
S. A. Khrapak, A. P. Nefedov, O. F. Petrov, and O. S. Vaulina, Dynamical properties of random charge fluctuations in a dusty plasma with different charging mechanisms, Phys. Rev. E 59, 6017 (1999)
CrossRef ADS Google scholar
[43]
D. B. Fried and S. D. Conte, The Plasma Dispersion Function, New York: Academic Press, 1961
[44]
N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, New York: McGraw-Hill, 1973
[45]
X. G. Wang and Q. B. Luan, Low frequency Whistler waves excited in fast magnetic reconnection processes, Front. Phys. 8(5), 585 (2013)
CrossRef ADS Google scholar
[46]
Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)
CrossRef ADS Google scholar
[47]
D. Montgomery, G. Joyce, and R. Sugihara, Inverse third power law for the shielding of test particles, Plasma Phys. 10(7), 681 (1968)
CrossRef ADS Google scholar
[48]
S. A. Khrapak and G. Morfill, Waves in two component electron-dust plasma, Phys. Plasmas 8(6), 2629 (2001)
CrossRef ADS Google scholar
[49]
P. Debye and E. Hückel, The theory of electrolytes (I): Lowering of freezing point and related phenomena, Phys. Z. 24, 185 (1923)
[50]
M. Rosenberg and P. K. Shukla, On beam-plasma interaction in a dust-electron plasma, IEEE Trans. Plasma Sci. 29(2), 202 (2001)
CrossRef ADS Google scholar
[51]
P. K. Shukla and N. N. Rao, Coulomb crystallization in colloidal plasmas with streaming ions and dust grains, Phys. Plasmas 3(5), 1770 (1996)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg Berlin Heidelberg
AI Summary AI Mindmap
PDF(300 KB)

Accesses

Citations

Detail

Sections
Recommended

/