3D entangled fractional squeezing transformation and its quantum mechanical correspondence

Fang Jia, Shuang Xu, Cheng-Zhi Deng, Cun-Jin Liu, Li-Yun Hu

PDF(196 KB)
PDF(196 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 110302. DOI: 10.1007/s11467-015-0538-1
RESEARCH ARTICLE
RESEARCH ARTICLE

3D entangled fractional squeezing transformation and its quantum mechanical correspondence

Author information +
History +

Abstract

A new type of entangled fractional squeezing transformation (EFrST) has been theoretically proposed for 2D entanglement [Front. Phys. 10, 100302 (2015)]. In this paper, we shall extend this case to that of 3D entanglement by introducing a type of three-mode entangled state representation, which is not the product of three 1D cases. Using the technique of integration within an ordered product of operators, we derive a compact unitary operator corresponding to the 3D fractional entangling transformation, which is an entangling operator that presents a clear transformation relation. We also verified that the additivity property of the novel 3D EFrST is of a Fourier character by using its quantum mechanical description. As an application of this representation, the EFrST of the three-mode number state is calculated using the quantum description of the EFrST.

Keywords

entangled fractional squeezing transformation / entangled state representation

Cite this article

Download citation ▾
Fang Jia, Shuang Xu, Cheng-Zhi Deng, Cun-Jin Liu, Li-Yun Hu. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence. Front. Phys., 2016, 11(3): 110302 https://doi.org/10.1007/s11467-015-0538-1

References

[1]
E. U. Condon, Immersion of the Fourier transform in a continuous group of functional transformations, Proc. Natl. Acad. Sci. USA 23(3), 158 (1937)
CrossRef ADS Google scholar
[2]
V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Appl. Math. 25(3), 241 (1980)
CrossRef ADS Google scholar
[3]
D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation (I), J. Opt. Soc. Am. A 10(9), 1875 (1993)
CrossRef ADS Google scholar
[4]
H. M. Ozakatas and D. Mendlovic, Fractional Fourier transforms and their optical implementation (II), J. Opt. Soc. Am. A 10(12), 2522 (1993)
CrossRef ADS Google scholar
[5]
H. M. Ozaktas and D. Mendlovic, Fourier transforms of fractional orders and their optical interpretation, Opt. Commun. 101(3-4), 163 (1993)
CrossRef ADS Google scholar
[6]
Y. B. Karasik, Expression of the kernel of a fractional Fourier transform in elementary functions, Opt. Lett. 19(11), 769 (1994)
CrossRef ADS Google scholar
[7]
R. G. Dorsch and A. W. Lohmann, Fractional Fourier transform used for a lens-design problem, Appl. Opt. 34(20), 4111 (1995)
CrossRef ADS Google scholar
[8]
A. W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A 10(10), 2181 (1993)
CrossRef ADS Google scholar
[9]
D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform, Appl. Opt. 33(26), 6188 (1994)
CrossRef ADS Google scholar
[10]
H. Y. Fan and L. Y. Hu, Correpondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)
CrossRef ADS Google scholar
[11]
H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)
CrossRef ADS Google scholar
[12]
A. Wunsche, About integration within ordered products in quantum optics, J. Opt. B 1(3), R11 (1999)
CrossRef ADS Google scholar
[13]
H. Y. Fan and H. L. Lu, Symplectic wavelet transformation, Opt. Lett. 31(23), 3432 (2006)
CrossRef ADS Google scholar
[14]
H. Y. Fan, Representation and Transformation Theory in Quantum Mechanics, Shanghai: Shanghai Scientific and Technical publishers, 1997 (in Chinese)
[15]
K. M. Zheng, S. Y. Liu, H. L. Zhang, C. J. Liu, and L. Y. Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451 (2014)
CrossRef ADS Google scholar
[16]
H. Y. Fan, Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation, Opt. Lett. 28(22), 2177 (2003)
CrossRef ADS Google scholar
[17]
H. Y. Fan, J. H. Chen, and P. F. Zhang, On the entangled fractional squeezing transformation, Front. Phys. 10(2), 100302 (2015)
CrossRef ADS Google scholar
[18]
H. Y. Fan and J. H. Chen, On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations, Front. Phys. 10(1), 100301 (2015)
CrossRef ADS Google scholar
[19]
C. H. Lv, H. Y. Fan, and D. W. Li, From fractional Fourier transformation to quantum mechanical fractional squeezing transformation, Chin. Phys. B 24(2), 020301 (2015)
CrossRef ADS Google scholar
[20]
H. Y. Fan, L. Y. Hu, and J. S. Wang, Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics, J. Opt. Soc. Am. A. 25(4), 974 (2008)
CrossRef ADS Google scholar
[21]
S. Xu, L. Y. Hu, and J. H. Huang, New fractional entangling transform and its quantum mechanical correspondence, Chin. Opt. Lett. 13(3), 030801 (2015)
CrossRef ADS Google scholar
[22]
H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)
CrossRef ADS Google scholar
[23]
H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 81 (2014)
CrossRef ADS Google scholar
[24]
H. Y. Fan and S. Y. Lou, Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering, Front. Phys. 9, 464 (2014)
CrossRef ADS Google scholar
[25]
C. H. Lv and H. Y. Fan, Optical entangled fractional Fourier transform derived via non-unitary SU(2) bosonic operator realization and its convolution theorem, Opt. Commun. 284(7), 1925 (2011)
CrossRef ADS Google scholar
[26]
F. T. Arrechi, C. Eric, G. Robert, and T. Harry, Atomic coherent states in quantum optics, Phys. Rev. A 6(6), 2211 (1972)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/