3D entangled fractional squeezing transformation and its quantum mechanical correspondence

Fang Jia , Shuang Xu , Cheng-Zhi Deng , Cun-Jin Liu , Li-Yun Hu

Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 110302

PDF (196KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 110302 DOI: 10.1007/s11467-015-0538-1
RESEARCH ARTICLE

3D entangled fractional squeezing transformation and its quantum mechanical correspondence

Author information +
History +
PDF (196KB)

Abstract

A new type of entangled fractional squeezing transformation (EFrST) has been theoretically proposed for 2D entanglement [Front. Phys. 10, 100302 (2015)]. In this paper, we shall extend this case to that of 3D entanglement by introducing a type of three-mode entangled state representation, which is not the product of three 1D cases. Using the technique of integration within an ordered product of operators, we derive a compact unitary operator corresponding to the 3D fractional entangling transformation, which is an entangling operator that presents a clear transformation relation. We also verified that the additivity property of the novel 3D EFrST is of a Fourier character by using its quantum mechanical description. As an application of this representation, the EFrST of the three-mode number state is calculated using the quantum description of the EFrST.

Keywords

entangled fractional squeezing transformation / entangled state representation

Cite this article

Download citation ▾
Fang Jia, Shuang Xu, Cheng-Zhi Deng, Cun-Jin Liu, Li-Yun Hu. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence. Front. Phys., 2016, 11(3): 110302 DOI:10.1007/s11467-015-0538-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. U. Condon, Immersion of the Fourier transform in a continuous group of functional transformations, Proc. Natl. Acad. Sci. USA 23(3), 158 (1937)

[2]

V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Appl. Math. 25(3), 241 (1980)

[3]

D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation (I), J. Opt. Soc. Am. A 10(9), 1875 (1993)

[4]

H. M. Ozakatas and D. Mendlovic, Fractional Fourier transforms and their optical implementation (II), J. Opt. Soc. Am. A 10(12), 2522 (1993)

[5]

H. M. Ozaktas and D. Mendlovic, Fourier transforms of fractional orders and their optical interpretation, Opt. Commun. 101(3-4), 163 (1993)

[6]

Y. B. Karasik, Expression of the kernel of a fractional Fourier transform in elementary functions, Opt. Lett. 19(11), 769 (1994)

[7]

R. G. Dorsch and A. W. Lohmann, Fractional Fourier transform used for a lens-design problem, Appl. Opt. 34(20), 4111 (1995)

[8]

A. W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A 10(10), 2181 (1993)

[9]

D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform, Appl. Opt. 33(26), 6188 (1994)

[10]

H. Y. Fan and L. Y. Hu, Correpondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys. 7(3), 261 (2012)

[11]

H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)

[12]

A. Wunsche, About integration within ordered products in quantum optics, J. Opt. B 1(3), R11 (1999)

[13]

H. Y. Fan and H. L. Lu, Symplectic wavelet transformation, Opt. Lett. 31(23), 3432 (2006)

[14]

H. Y. Fan, Representation and Transformation Theory in Quantum Mechanics, Shanghai: Shanghai Scientific and Technical publishers, 1997 (in Chinese)

[15]

K. M. Zheng, S. Y. Liu, H. L. Zhang, C. J. Liu, and L. Y. Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451 (2014)

[16]

H. Y. Fan, Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation, Opt. Lett. 28(22), 2177 (2003)

[17]

H. Y. Fan, J. H. Chen, and P. F. Zhang, On the entangled fractional squeezing transformation, Front. Phys. 10(2), 100302 (2015)

[18]

H. Y. Fan and J. H. Chen, On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations, Front. Phys. 10(1), 100301 (2015)

[19]

C. H. Lv, H. Y. Fan, and D. W. Li, From fractional Fourier transformation to quantum mechanical fractional squeezing transformation, Chin. Phys. B 24(2), 020301 (2015)

[20]

H. Y. Fan, L. Y. Hu, and J. S. Wang, Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics, J. Opt. Soc. Am. A. 25(4), 974 (2008)

[21]

S. Xu, L. Y. Hu, and J. H. Huang, New fractional entangling transform and its quantum mechanical correspondence, Chin. Opt. Lett. 13(3), 030801 (2015)

[22]

H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2), 480 (2006)

[23]

H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 81 (2014)

[24]

H. Y. Fan and S. Y. Lou, Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering, Front. Phys. 9, 464 (2014)

[25]

C. H. Lv and H. Y. Fan, Optical entangled fractional Fourier transform derived via non-unitary SU(2) bosonic operator realization and its convolution theorem, Opt. Commun. 284(7), 1925 (2011)

[26]

F. T. Arrechi, C. Eric, G. Robert, and T. Harry, Atomic coherent states in quantum optics, Phys. Rev. A 6(6), 2211 (1972)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (196KB)

1069

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/