Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2

V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, J. W. Clark, V. A. Khodel

PDF(447 KB)
PDF(447 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117102. DOI: 10.1007/s11467-015-0536-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2

Author information +
History +

Abstract

We reveal and explain the scaling behavior of the thermopower S/T exhibited by the archetypal heavy-fermion (HF) metal YbRh2Si2 under the application of magnetic field B at temperature T. We show that the same scaling is demonstrated by different HF compounds such as β-YbAlB4 and the strongly correlated layered cobalt oxide [BiBa0.66K0.36O2]CoO2. Using YbRh2Si2 as an example, we demonstrate that the scaling behavior of S/T is violated at the antiferromagnetic phase transition, while both the residual resistivity ρ0 and the density of states, N, experience jumps at the phase transition, causing the thermopower to make two jumps and change its sign. Our elucidation is based on flattening of the single-particle spectrum that profoundly affects ρ0 and N. To depict the main features of the S/T behavior, we construct a T –B schematic phase diagram of YbRh2Si2. Our calculated S/T for the HF compounds are in good agreement with experimental facts and support our observations.

Keywords

thermoelectric and thermomagnetic effects / quantum phase transition / flat bands / non-Fermi-liquid states / strongly correlated electron systems / heavy fermions

Cite this article

Download citation ▾
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, J. W. Clark, V. A. Khodel. Scaling behavior of the thermopower of the archetypal heavy-fermion metal YbRh2Si2. Front. Phys., 2016, 11(2): 117102 https://doi.org/10.1007/s11467-015-0536-3

References

[1]
P. Coleman, C. Pèpin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys.: Condens. Matter 13(35), R723 (2001)
CrossRef ADS Google scholar
[2]
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
CrossRef ADS Google scholar
[3]
V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Scaling behavior of heavy fermion metals, Phys. Rep. 492(2-3), 31 (2010)
CrossRef ADS Google scholar
[4]
M. Ya. Amusia, K. G. Popov, V. R. Shaginyan, and W. A. Stephanowich, Theory of Heavy-Fermion Compounds- Theory of Strongly Correlated Fermi-Systems, Springer-Verlag, 2015
[5]
N. Oeschler, S. Hartmann, A. Pikul, C. Krellner, C. Geibel, and F. Steglich, Low-temperature specific heat of YbRh2Si2, Physica B 403(5-9), 1254 (2008)
CrossRef ADS Google scholar
[6]
V. R. Shaginyan, M. Ya. Amusia, and K. G. Popov, Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay, Phys. Lett. A 373(26), 2281 (2009)
CrossRef ADS Google scholar
[7]
K. S. Kim and C. Pépin, Thermopower as a signature of quantum criticality in heavy fermions, Phys. Rev. B 81(20), 205108 (2010)
CrossRef ADS Google scholar
[8]
K. S. Kim and C. Pépin, Thermopower as a fingerprint of the Kondo breakdown quantum critical point, Phys. Rev. B 83(7), 073104 (2011)
CrossRef ADS Google scholar
[9]
A. A. Abrikosov, Fundamentals of the Theory of Metals, Amsterdam: North-Holland, 1988
[10]
E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media, New-York: Elsevier, 1984
[11]
K. Behnia, D. Jaccard, and J. Flouquet, On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys.: Condens. Matter 16(28), 5187 (2004)
CrossRef ADS Google scholar
[12]
K. Miyake and H. Kohno, Theory of quasi-universal ratio of seebeck coefficient to specific heat in zero-temperature limit in correlated metals, J. Phys. Soc. Jpn. 74(1), 254 (2005)
CrossRef ADS Google scholar
[13]
V. Zlatić, R. Monnier, J. K. Freericks, and K. W. Becker, Relationship between the thermopower and entropy of strongly correlated electron systems, Phys. Rev. B 76(8), 085122 (2007)
CrossRef ADS Google scholar
[14]
V. A. Khodel and V. R. Shaginyan, Superfluidity in system with fermion condensate, JETP Lett. 51(9), 553 (1990)
[15]
P. Nozières, Properties of Fermi liquids with a finite range interaction, J. Phys. I France 2(4), 443 (1992)
[16]
V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, New approach in the microscopic Fermi systems theory, Phys. Rep. 249(1-2), 1 (1994)
CrossRef ADS Google scholar
[17]
G. E. Volovik, A new class of normal Fermi liquids, JETP Lett. 53(4), 222 (1991)
[18]
G. E. Volovik, From Standard Model of particle physics to room-temperature superconductivity, Phys. Scr. T164, 014014 (2015)
CrossRef ADS Google scholar
[19]
L. D. Landau, Theory of Fermi liquid, Sov. Phys. JETP 30(6), 920 (1956)
[20]
P. Limelette, W. Saulquin, H. Muguerra, and D. Grebille, From quantum criticality to enhanced thermopower in strongly correlated layered cobalt oxide, Phys. Rev. B 81(11), 115113 (2010)
CrossRef ADS Google scholar
[21]
S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, and F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2, Phys. Rev. Lett. 104(9), 096401 (2010)
CrossRef ADS Google scholar
[22]
S. Friedemann, S. Wirth, S. Kirchner, Q. Si, S. Hartmann, C. Krellner, C. Geibel, T. Westerkamp, M. Brando, and F. Steglich, Break up of heavy fermions at an antiferromagnetic instability, J. Phys. Soc. Jpn. 80(10), SA002 (2011)
CrossRef ADS Google scholar
[23]
P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89(5), 056402 (2002)
CrossRef ADS Google scholar
[24]
A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Critical behavior of a strongly interacting 2D electron system, Phys. Rev. Lett. 109(9), 096405 (2012)
CrossRef ADS Google scholar
[25]
Y. Machida, K. Tomokuni, C. Ogura, K. Izawa, K. Kuga, S. Nakatsuji, G. Lapertot, G. Knebel, J. P. Brison, and J. Flouquet, Thermoelectric response near a quantum critical point of YbAlB4 and YbRh2Si2: A comparative study, Phys. Rev. Lett. 109(15), 156405 (2012)
CrossRef ADS Google scholar
[26]
S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point, Nature 432(7019), 881 (2004)
CrossRef ADS Google scholar
[27]
U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Energy scales of Lu1-xYbxRh2Si2 by means of thermopower investigations, Phys. Rev. B 77(10), 104412 (2008)
CrossRef ADS Google scholar
[28]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Magnetic field dependence of the residual resistivity of the heavy-fermion metal CeCoIn5, Phys. Rev. B 86(8), 085147 (2012)
CrossRef ADS Google scholar
[29]
V. R. Shaginyan, A. Z. Msezane, K. G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Nature of the quantum critical point as disclosed by extraordinary behavior of magnetotransport and the Lorentz number in the heavy-fermion metal YbRh2Si2, JETP Lett. 96(6), 397 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(447 KB)

Accesses

Citations

Detail

Sections
Recommended

/