Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3

Ming An , Hui-Min Zhang , Ya-Kui Weng , Yang Zhang , Shuai Dong

Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 8 -117501.

PDF (368KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 8 -117501. DOI: 10.1007/s11467-015-0535-4
RESEARCH ARTICLE

Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3

Author information +
History +
PDF (368KB)

Abstract

Titanates with the perovskite structure, including ferroelectrics (e.g., BaTiO3) and ferromagnetic ones (e.g., YTiO3), are important functional materials. Recent theoretical studies predicted multiferroic states in strained EuTiO3 and titanate superlattices, the former of which has already been experimental confirmed. Here, a first-principles calculation is performed to investigate the structural, magnetic, and electronic properties of Y half-substituted LaTiO3. Our results reveal that the magnetism of Y0.5La0.5TiO3 sensitively depends on its structural details because of the inherent phase competition. The lowest energy state is the ferromagnetic state, resulting in 0.25 μB/Ti. Furthermore, some configurations of Y0.5La0.5TiO3 exhibit hybrid improper polarizations, which can be significantly affected by magnetism, resulting in the multiferroic properties. Because of the quenching disorder of substitution, the real Y0.5La0.5TiO3 material with random A-site ions may exhibit interesting relaxor behaviors.

Keywords

titanate / ferrimagnetic / ferroelectricity

Cite this article

Download citation ▾
Ming An, Hui-Min Zhang, Ya-Kui Weng, Yang Zhang, Shuai Dong. Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3. Front. Phys., 2016, 11(2): 8-117501 DOI:10.1007/s11467-015-0535-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Dagotto, Complexity in strongly correlated electronic systems, Science 309(5732), 257 (2005)

[2]

C. J. Fennie and K. M. Rabe, Magnetic and electric phase control in epitaxial EuTiO3 from first principles, Phys. Rev. Lett. 97(26), 267602 (2006)

[3]

J. H. Lee, L. Fang, E. Vlahos, X. L. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling, Nature 466(7309), 954 (2010)

[4]

N. C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites, Nat. Commun. 6, 6677 (2015)

[5]

M. Mochizuki and M. Imada, Orbital physics in the perovskite Ti oxides, New J. Phys. 6, 154 (2004)

[6]

X. Huang, Y. Tang, and S. Dong, Strain-engineered A-type antiferromagnetic order in YTiO3: A first-principles calculation, J. Appl. Phys. 113, 17E108 (2013)

[7]

Y. Weng, X. Huang, and S. Dong, Magnetic orders of LaTiO3 under epitaxial strain: A first-principles study, J. Appl. Phys. 115, 17E108 (2014)

[8]

L. Yang, Y. Weng, H. Zhang, and S. Dong, Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: A first-principles study, J. Phys.: Condens. Matter 26(47), 476001 (2014)

[9]

S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Origin of multiferroic spiral spin order in the RMnO3 perovskites, Phys. Rev. B 78(15), 155121 (2008)

[10]

A. C. Komarek, H. Roth, M. Cwik, W. D. Stein, J. Baier, M. Kriener, F. Bouree, T. Lorenz, and M. Braden, Magnetoelastic coupling in RTiO3 (R=La,Nd,Sm,Gd,Y) investigated with diffraction techniques and thermal expansion measurements, Phys. Rev. B 75(22), 224402 (2007)

[11]

M. Cwik, T. Lorenz, J. Baier, R. Muller, G. Andre, F. Bouree, F. Lichtenberg, A. Freimuth, R. Schmitz, E. Muller-Hartmann, and M. Braden, Crystal and magnetic structure of LaTiO3: Evidence for non-degenerate t2g-orbitals, Phys. Rev. B 68(6), 060401 (2003)

[12]

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

[13]

G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

[14]

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

[15]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: A LSDA+Ustudy,Phys. Rev. B 57(3), 1505 (1998)

[16]

R. D. King-Smith and D. Vanderbilt, Thoery of polarization of crystalline solids, Phys. Rev. B 47(3), 1651 (1993)

[17]

J. Young and J. M. Rondinelli, Atomic scale design of polar perovskite oxides without second-order Jahn-Teller ions, Chem. Mater. 25(22), 4545 (2013)

[18]

E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452(7188), 732 (2008)

[19]

N. A. Benedek and C. J. Fennie, Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling, Phys. Rev. Lett. 106(10), 107204 (2011)

[20]

H. M. Zhang, Y. K. Weng, X. Y. Yao, and S. Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B 91(19), 195145 (2015)

[21]

J. Alaria, P. Borisov, M. S. Dyer, T. D. Manning, S. Lepadatu, M. G. Cain, E. D. Mishina, N. E. Sherstyuk, N. A. Ilyin, J. Hadermann, D. Lederman, J. B. Claridge, and M. J. Rosseinsky, Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components, Chem. Sci. 5(4), 1599 (2014)

[22]

H. M. Zhang, M. An, X.Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(5), 107701 (2015)

[23]

J. M. Rondinelli and C. J. Fennie, Octahedral rotation-induced ferroelectricity in cation ordered perovskites, Adv. Mater. 24(15), 1961 (2012)

[24]

D. V. B. Murthy and G. Srinivasan, Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites, Front. Phys. 7, 418 (2012)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (368KB)

1262

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/