Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3

Ming An, Hui-Min Zhang, Ya-Kui Weng, Yang Zhang, Shuai Dong

PDF(368 KB)
PDF(368 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117501. DOI: 10.1007/s11467-015-0535-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3

Author information +
History +

Abstract

Titanates with the perovskite structure, including ferroelectrics (e.g., BaTiO3) and ferromagnetic ones (e.g., YTiO3), are important functional materials. Recent theoretical studies predicted multiferroic states in strained EuTiO3 and titanate superlattices, the former of which has already been experimental confirmed. Here, a first-principles calculation is performed to investigate the structural, magnetic, and electronic properties of Y half-substituted LaTiO3. Our results reveal that the magnetism of Y0.5La0.5TiO3 sensitively depends on its structural details because of the inherent phase competition. The lowest energy state is the ferromagnetic state, resulting in 0.25 μB/Ti. Furthermore, some configurations of Y0.5La0.5TiO3 exhibit hybrid improper polarizations, which can be significantly affected by magnetism, resulting in the multiferroic properties. Because of the quenching disorder of substitution, the real Y0.5La0.5TiO3 material with random A-site ions may exhibit interesting relaxor behaviors.

Keywords

titanate / ferrimagnetic / ferroelectricity

Cite this article

Download citation ▾
Ming An, Hui-Min Zhang, Ya-Kui Weng, Yang Zhang, Shuai Dong. Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3. Front. Phys., 2016, 11(2): 117501 https://doi.org/10.1007/s11467-015-0535-4

References

[1]
E. Dagotto, Complexity in strongly correlated electronic systems, Science 309(5732), 257 (2005)
CrossRef ADS Google scholar
[2]
C. J. Fennie and K. M. Rabe, Magnetic and electric phase control in epitaxial EuTiO3 from first principles, Phys. Rev. Lett. 97(26), 267602 (2006)
CrossRef ADS Google scholar
[3]
J. H. Lee, L. Fang, E. Vlahos, X. L. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling, Nature 466(7309), 954 (2010)
CrossRef ADS Google scholar
[4]
N. C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites, Nat. Commun. 6, 6677 (2015)
CrossRef ADS Google scholar
[5]
M. Mochizuki and M. Imada, Orbital physics in the perovskite Ti oxides, New J. Phys. 6, 154 (2004)
CrossRef ADS Google scholar
[6]
X. Huang, Y. Tang, and S. Dong, Strain-engineered A-type antiferromagnetic order in YTiO3: A first-principles calculation, J. Appl. Phys. 113, 17E108 (2013)
[7]
Y. Weng, X. Huang, and S. Dong, Magnetic orders of LaTiO3 under epitaxial strain: A first-principles study, J. Appl. Phys. 115, 17E108 (2014)
[8]
L. Yang, Y. Weng, H. Zhang, and S. Dong, Strain driven sequential magnetic transitions in strained GdTiO3 on compressive substrates: A first-principles study, J. Phys.: Condens. Matter 26(47), 476001 (2014)
CrossRef ADS Google scholar
[9]
S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Origin of multiferroic spiral spin order in the RMnO3 perovskites, Phys. Rev. B 78(15), 155121 (2008)
CrossRef ADS Google scholar
[10]
A. C. Komarek, H. Roth, M. Cwik, W. D. Stein, J. Baier, M. Kriener, F. Bouree, T. Lorenz, and M. Braden, Magnetoelastic coupling in RTiO3 (R=La,Nd,Sm,Gd,Y) investigated with diffraction techniques and thermal expansion measurements, Phys. Rev. B 75(22), 224402 (2007)
CrossRef ADS Google scholar
[11]
M. Cwik, T. Lorenz, J. Baier, R. Muller, G. Andre, F. Bouree, F. Lichtenberg, A. Freimuth, R. Schmitz, E. Muller-Hartmann, and M. Braden, Crystal and magnetic structure of LaTiO3: Evidence for non-degenerate t2g-orbitals, Phys. Rev. B 68(6), 060401 (2003)
CrossRef ADS Google scholar
[12]
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[13]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[14]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[15]
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: A LSDA+Ustudy,Phys. Rev. B 57(3), 1505 (1998)
CrossRef ADS Google scholar
[16]
R. D. King-Smith and D. Vanderbilt, Thoery of polarization of crystalline solids, Phys. Rev. B 47(3), 1651 (1993)
CrossRef ADS Google scholar
[17]
J. Young and J. M. Rondinelli, Atomic scale design of polar perovskite oxides without second-order Jahn-Teller ions, Chem. Mater. 25(22), 4545 (2013)
CrossRef ADS Google scholar
[18]
E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452(7188), 732 (2008)
CrossRef ADS Google scholar
[19]
N. A. Benedek and C. J. Fennie, Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling, Phys. Rev. Lett. 106(10), 107204 (2011)
CrossRef ADS Google scholar
[20]
H. M. Zhang, Y. K. Weng, X. Y. Yao, and S. Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B 91(19), 195145 (2015)
CrossRef ADS Google scholar
[21]
J. Alaria, P. Borisov, M. S. Dyer, T. D. Manning, S. Lepadatu, M. G. Cain, E. D. Mishina, N. E. Sherstyuk, N. A. Ilyin, J. Hadermann, D. Lederman, J. B. Claridge, and M. J. Rosseinsky, Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components, Chem. Sci. 5(4), 1599 (2014)
CrossRef ADS Google scholar
[22]
H. M. Zhang, M. An, X.Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(5), 107701 (2015)
CrossRef ADS Google scholar
[23]
J. M. Rondinelli and C. J. Fennie, Octahedral rotation-induced ferroelectricity in cation ordered perovskites, Adv. Mater. 24(15), 1961 (2012)
CrossRef ADS Google scholar
[24]
D. V. B. Murthy and G. Srinivasan, Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites, Front. Phys. 7, 418 (2012)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(368 KB)

Accesses

Citations

Detail

Sections
Recommended

/