Direct growth of graphene on gallium nitride using C2H2 as carbon source
Bing Wang (王兵), Yun Zhao (赵云), Xiao-Yan Yi (伊晓燕), Guo-Hong Wang (王国宏), Zhi-Qiang Liu (刘志强), Rui-Rei Duan (段瑞飞), Peng Huang (黄鹏), Jun-Xi Wang (王军喜), Jin-Min Li (李晋闽)
Direct growth of graphene on gallium nitride using C2H2 as carbon source
Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.
graphene / C2H2 / gallium nitride / chemical vapor deposition / Raman spectroscopy
[1] |
S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors., Nat. Mater. 5(10), 810 (2006)
CrossRef
ADS
Google scholar
|
[2] |
S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes., Science 281(5379), 955 (1998)
CrossRef
ADS
Google scholar
|
[3] |
R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, and R. Lin, Mand Lu Y C, Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells, IEEE Electron Device Lett. 30(7), 724 (2009)
CrossRef
ADS
Google scholar
|
[4] |
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
CrossRef
ADS
Google scholar
|
[5] |
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X.Y. Jiang, Z.Y. Tang, H.X. Xu, Z.X. Wei, Y.Q.Liu, M.H. Liu, L. Jiang, X.H. Bao, L.J. Wan, and C.L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef
ADS
Google scholar
|
[6] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene., Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[7] |
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene., Science 313(5789), 951 (2006)
CrossRef
ADS
Google scholar
|
[8] |
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Phase-coherent transport in graphene quantum billiards., Science 317(5844), 1530 (2007)
CrossRef
ADS
Google scholar
|
[9] |
K. I. Bolotin, S. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, P. Hone Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
CrossRef
ADS
Google scholar
|
[10] |
G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material., Nat. Nanotechnol. 3(5), 270 (2008)
CrossRef
ADS
Google scholar
|
[11] |
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem. B 108(52), 19912 (2004)
CrossRef
ADS
Google scholar
|
[12] |
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons., Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef
ADS
Google scholar
|
[13] |
P. Neil, Dasgupta, Peidong Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
CrossRef
ADS
Google scholar
|
[14] |
X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells., Nano Lett. 8(1), 323 (2008)
CrossRef
ADS
Google scholar
|
[15] |
P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-based liquid crystal device., Nano Lett. 8(6), 1704 (2008)
CrossRef
ADS
Google scholar
|
[16] |
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene., Nano Lett. 8(3), 902 (2008)
CrossRef
ADS
Google scholar
|
[17] |
J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes., ACS Nano 4(1), 43 (2010)
CrossRef
ADS
Google scholar
|
[18] |
T. Mueller, F. N. Xia, and P. Avouris, Graphene photo detectors for high-speed optical communications, Nat. Photonics 4(5), 297 (2010)
CrossRef
ADS
Google scholar
|
[19] |
H. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C.W. Shi, and L.Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef
ADS
Google scholar
|
[20] |
N. Liu, W. Li, M. Pasta, and Y. Cui, Mauro Pasta, Yi Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
CrossRef
ADS
Google scholar
|
[21] |
Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
CrossRef
ADS
Google scholar
|
[22] |
H. Ueta, H. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Highly oriented monolayer graphite formation on Pt(1 1 1) by a supersonic methane beam, Surf. Sci. 560(1-3), 183 (2004)
CrossRef
ADS
Google scholar
|
[23] |
N. Gall, E. Rut’kov, and A. Tontegode, Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution, Phys. Solid State 46(2), 371 (2004)
CrossRef
ADS
Google scholar
|
[24] |
S. Marchini, S. Günther, and J. Wintterlin, Gunther S and Wintterlin J, Scanning tunneling microscopy of graphene on Ru(0001), Phys. Rev. B 76(7), 075429 (2007)
CrossRef
ADS
Google scholar
|
[25] |
J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111)., Nano Lett. 8(2), 565 (2008)
CrossRef
ADS
Google scholar
|
[26] |
A. L. Vázquez de Parga, F. Calleja, B. Borca, J. J. Passeggi, F. Hinarejos, F. Guinea, and R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure., Phys. Rev. Lett. 100(5), 056807 (2008)
CrossRef
ADS
Google scholar
|
[27] |
P. W. Sutter, J. I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium., Nat. Mater. 7(5), 406 (2008)
CrossRef
ADS
Google scholar
|
[28] |
Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper., Science 342(6159), 720 (2013)
CrossRef
ADS
Google scholar
|
[29] |
Z. Yun, W. Gang, and H. C. Yang, An Tie-Lei, Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst, Chin. Phys. B 23(9), 096802 (2014)
CrossRef
ADS
Google scholar
|
[30] |
Y. S. Kim, J. H. Lee, Y. D. Kim, S. K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y. D. Park, S. Seo, and S. H. Chun, Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition., Nanoscale 5(3), 1221 (2013)
CrossRef
ADS
Google scholar
|
[31] |
M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal. 131(1), 60 (1991)
CrossRef
ADS
Google scholar
|
[32] |
M. Furtado, and G. Jacob, Study on the influence of annealing effects in GaN VPE, J. Cryst. Growth 64(2), 257 (1983)
CrossRef
ADS
Google scholar
|
[33] |
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers., Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef
ADS
Google scholar
|
[34] |
L. Tao, C. Y. Qiu, F. Yu, H. C. Yang, M. J. Chen, G. Wang, and L. F. Sun, Modification on Single-Layer Graphene Induced by Low-Energy Electron-Beam Irradiation, J. Phys. Chem. C 117(19), 10079 (2013)
CrossRef
ADS
Google scholar
|
[35] |
M. M. Qin, W. Ji, Y. Y. Feng, and W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B 23(2), 028103 (2014)
CrossRef
ADS
Google scholar
|
[36] |
I. Calizo, I. Bejenari, M. Rahman, G. X. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, J. Appl. Phys. 106(4), 043509 (2009)
CrossRef
ADS
Google scholar
|
[37] |
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy., Small 6(2), 195 (2010)
CrossRef
ADS
Google scholar
|
[38] |
G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films., Nanotechnology 21(14), 145604 (2010)
CrossRef
ADS
Google scholar
|
[39] |
M. Regmi, M. F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50(1), 134 (2012)
CrossRef
ADS
Google scholar
|
[40] |
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils., Science 324(5932), 1312 (2009)
CrossRef
ADS
Google scholar
|
[41] |
P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, and B. Caussat, 0, Caroline Rabot b, Hugues Vergnes a, High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surf. Coat. Tech. 230, 87 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |