Direct growth of graphene on gallium nitride using C2H2 as carbon source

Bing Wang (王兵), Yun Zhao (赵云), Xiao-Yan Yi (伊晓燕), Guo-Hong Wang (王国宏), Zhi-Qiang Liu (刘志强), Rui-Rei Duan (段瑞飞), Peng Huang (黄鹏), Jun-Xi Wang (王军喜), Jin-Min Li (李晋闽)

PDF(343 KB)
PDF(343 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 116803. DOI: 10.1007/s11467-015-0534-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Direct growth of graphene on gallium nitride using C2H2 as carbon source

Author information +
History +

Abstract

Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.

Keywords

graphene / C2H2 / gallium nitride / chemical vapor deposition / Raman spectroscopy

Cite this article

Download citation ▾
Bing Wang (王兵), Yun Zhao (赵云), Xiao-Yan Yi (伊晓燕), Guo-Hong Wang (王国宏), Zhi-Qiang Liu (刘志强), Rui-Rei Duan (段瑞飞), Peng Huang (黄鹏), Jun-Xi Wang (王军喜), Jin-Min Li (李晋闽). Direct growth of graphene on gallium nitride using C2H2 as carbon source. Front. Phys., 2016, 11(2): 116803 https://doi.org/10.1007/s11467-015-0534-5

References

[1]
S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors., Nat. Mater. 5(10), 810 (2006)
CrossRef ADS Google scholar
[2]
S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes., Science 281(5379), 955 (1998)
CrossRef ADS Google scholar
[3]
R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, and R. Lin, Mand Lu Y C, Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells, IEEE Electron Device Lett. 30(7), 724 (2009)
CrossRef ADS Google scholar
[4]
U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
CrossRef ADS Google scholar
[5]
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X.Y. Jiang, Z.Y. Tang, H.X. Xu, Z.X. Wei, Y.Q.Liu, M.H. Liu, L. Jiang, X.H. Bao, L.J. Wan, and C.L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef ADS Google scholar
[6]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene., Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[7]
T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene., Science 313(5789), 951 (2006)
CrossRef ADS Google scholar
[8]
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Phase-coherent transport in graphene quantum billiards., Science 317(5844), 1530 (2007)
CrossRef ADS Google scholar
[9]
K. I. Bolotin, S. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, P. Hone Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
CrossRef ADS Google scholar
[10]
G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material., Nat. Nanotechnol. 3(5), 270 (2008)
CrossRef ADS Google scholar
[11]
C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem. B 108(52), 19912 (2004)
CrossRef ADS Google scholar
[12]
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons., Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef ADS Google scholar
[13]
P. Neil, Dasgupta, Peidong Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
CrossRef ADS Google scholar
[14]
X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells., Nano Lett. 8(1), 323 (2008)
CrossRef ADS Google scholar
[15]
P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-based liquid crystal device., Nano Lett. 8(6), 1704 (2008)
CrossRef ADS Google scholar
[16]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene., Nano Lett. 8(3), 902 (2008)
CrossRef ADS Google scholar
[17]
J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes., ACS Nano 4(1), 43 (2010)
CrossRef ADS Google scholar
[18]
T. Mueller, F. N. Xia, and P. Avouris, Graphene photo detectors for high-speed optical communications, Nat. Photonics 4(5), 297 (2010)
CrossRef ADS Google scholar
[19]
H. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C.W. Shi, and L.Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
CrossRef ADS Google scholar
[20]
N. Liu, W. Li, M. Pasta, and Y. Cui, Mauro Pasta, Yi Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
CrossRef ADS Google scholar
[21]
Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
CrossRef ADS Google scholar
[22]
H. Ueta, H. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Highly oriented monolayer graphite formation on Pt(1 1 1) by a supersonic methane beam, Surf. Sci. 560(1-3), 183 (2004)
CrossRef ADS Google scholar
[23]
N. Gall, E. Rut’kov, and A. Tontegode, Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution, Phys. Solid State 46(2), 371 (2004)
CrossRef ADS Google scholar
[24]
S. Marchini, S. Günther, and J. Wintterlin, Gunther S and Wintterlin J, Scanning tunneling microscopy of graphene on Ru(0001), Phys. Rev. B 76(7), 075429 (2007)
CrossRef ADS Google scholar
[25]
J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111)., Nano Lett. 8(2), 565 (2008)
CrossRef ADS Google scholar
[26]
A. L. Vázquez de Parga, F. Calleja, B. Borca, J. J. Passeggi, F. Hinarejos, F. Guinea, and R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure., Phys. Rev. Lett. 100(5), 056807 (2008)
CrossRef ADS Google scholar
[27]
P. W. Sutter, J. I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium., Nat. Mater. 7(5), 406 (2008)
CrossRef ADS Google scholar
[28]
Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper., Science 342(6159), 720 (2013)
CrossRef ADS Google scholar
[29]
Z. Yun, W. Gang, and H. C. Yang, An Tie-Lei, Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst, Chin. Phys. B 23(9), 096802 (2014)
CrossRef ADS Google scholar
[30]
Y. S. Kim, J. H. Lee, Y. D. Kim, S. K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y. D. Park, S. Seo, and S. H. Chun, Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition., Nanoscale 5(3), 1221 (2013)
CrossRef ADS Google scholar
[31]
M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal. 131(1), 60 (1991)
CrossRef ADS Google scholar
[32]
M. Furtado, and G. Jacob, Study on the influence of annealing effects in GaN VPE, J. Cryst. Growth 64(2), 257 (1983)
CrossRef ADS Google scholar
[33]
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers., Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef ADS Google scholar
[34]
L. Tao, C. Y. Qiu, F. Yu, H. C. Yang, M. J. Chen, G. Wang, and L. F. Sun, Modification on Single-Layer Graphene Induced by Low-Energy Electron-Beam Irradiation, J. Phys. Chem. C 117(19), 10079 (2013)
CrossRef ADS Google scholar
[35]
M. M. Qin, W. Ji, Y. Y. Feng, and W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B 23(2), 028103 (2014)
CrossRef ADS Google scholar
[36]
I. Calizo, I. Bejenari, M. Rahman, G. X. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, J. Appl. Phys. 106(4), 043509 (2009)
CrossRef ADS Google scholar
[37]
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy., Small 6(2), 195 (2010)
CrossRef ADS Google scholar
[38]
G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films., Nanotechnology 21(14), 145604 (2010)
CrossRef ADS Google scholar
[39]
M. Regmi, M. F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50(1), 134 (2012)
CrossRef ADS Google scholar
[40]
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils., Science 324(5932), 1312 (2009)
CrossRef ADS Google scholar
[41]
P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, and B. Caussat, 0, Caroline Rabot b, Hugues Vergnes a, High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surf. Coat. Tech. 230, 87 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(343 KB)

Accesses

Citations

Detail

Sections
Recommended

/