Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs

Juan Ren, Ning-Chao Zhang, Peng Wang, Chao Ning, Hong Zhang, Xiao-Juan Peng

PDF(722 KB)
PDF(722 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 118101. DOI: 10.1007/s11467-015-0533-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs

Author information +
History +

Abstract

Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom–doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5d, 6s, and B-2p, N-2p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.

Keywords

density functional theory / RE atoms / single-walled BN nanotubes / doping

Cite this article

Download citation ▾
Juan Ren, Ning-Chao Zhang, Peng Wang, Chao Ning, Hong Zhang, Xiao-Juan Peng. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs. Front. Phys., 2016, 11(2): 118101 https://doi.org/10.1007/s11467-015-0533-6

References

[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348), 56 (1991)
CrossRef ADS Google scholar
[2]
R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes — the route toward applications, Science 297(5582), 787 (2002)
CrossRef ADS Google scholar
[3]
D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106(3), 1105 (2006)
CrossRef ADS Google scholar
[4]
V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, M. E. Levin-shtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, New York: Wiley, 2001
[5]
D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Adv. Mater. 19(18), 2413 (2007)
CrossRef ADS Google scholar
[6]
Z. Zhou and Y. F. Li, How different are BN nanotubes from carbon nanotubes? J. Comput. Theor. Nanosci. 6(2), 327 (2009)
CrossRef ADS Google scholar
[7]
C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization, Phys. Rev. B 74(15), 153413 (2006)
CrossRef ADS Google scholar
[8]
L. Lai, W. Song, J. Lu, Z. Gao, S. Nagase, M. Ni, W. N. Mei, J. Liu, D. Yu, and H. Ye, Structural and electronic properties of fluorinated boron nitride nanotubes., J Phys Chem B 110(29), 14092 (2006)
CrossRef ADS Google scholar
[9]
J. Zhang, K. P. Loh, W. S. Yang, and P. Wu, Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption, Appl. Phys. Lett. 87(24), 243105 (2005)
CrossRef ADS Google scholar
[10]
C. Jo, C. Kim, and Y. H. Lee, Electronic properties of K-doped single-wall carbon nanotube bundles, Phys. Rev. B 65(3), 035420 (2002)
CrossRef ADS Google scholar
[11]
J. Zhao, A. Buldum, J. Han, and J. P. Lu, 0, First-principles study of Li-intercalated carbon nanotube ropes., Phys. Rev. Lett. 85(8), 1706 (2000)
CrossRef ADS Google scholar
[12]
J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, DFT study on nano structures of Sn/CNT complex for potential li-ion battery application, J. Phys. Chem. C 113(31), 14015 (2009)
CrossRef ADS Google scholar
[13]
E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67(20), 201401 (2003)
CrossRef ADS Google scholar
[14]
E. Durgun, S. Dag, S. Ciraci, and O. Gulseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes, J. Phys. Chem. B 108(2), 575 (2004)
CrossRef ADS Google scholar
[15]
Y. L. Mao, X. H. Yan, and Y. Xiao, First-principles study of transition-metal-doped single-walled carbon nanotubes, Nanotechnology 16(12), 3092 (2005)
CrossRef ADS Google scholar
[16]
A. Udomvech, T. Kerdcharoen, and T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length, Chem. Phys. Lett. 406(1-3), 161 (2005)
CrossRef ADS Google scholar
[17]
Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9(2), 200 (2014)
CrossRef ADS Google scholar
[18]
J. Ren, H. Zhang, and X. L. Cheng, Electronic and magnetic properties of all 3 d transition-metal-doped ZnO monolayers, Int. J. Quantum Chem. 113(19), 2243 (2013)
CrossRef ADS Google scholar
[19]
X. Wu and X. C. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: A density-functional study, J Chem Phys 125(4), 44711 (2006)
CrossRef ADS Google scholar
[20]
S. F. Wang, Y. Zhang, J. M. Zhang, K. W. Xu, and V. Ji, Electronic structure and optical property of 3d transition metal doped (5,5) boron nitride nanotube, Appl. Phys. A 109(3), 601 (2012)
CrossRef ADS Google scholar
[21]
R. J. Baierle, T. M. Schmidt, and A. Fazzio, Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes, Solid State Commun. 142(1-2), 49 (2007)
CrossRef ADS Google scholar
[22]
Y. F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, and B. Berzina, Atomic and electronic structure of single-walled BN nanotubes containing N vacancies as well as C and O substitutes of N atoms, Eur. Phys. J. B 67(4), 519 (2009)
CrossRef ADS Google scholar
[23]
C. S. Guo, W. J. Fan, and R. Q. Zhang, Spin polarization of the injected carriers in C-doped BN nanotubes, Solid State Commun. 137(5), 246 (2006)
CrossRef ADS Google scholar
[24]
C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanotubes, J Nanosci Nanotechnol 4(1-2), 35 (2004)
CrossRef ADS Google scholar
[25]
C. Zhi, Y. Bando, C. Tang, and D. Golberg, Boron nitride nanotubes, Mater. Sci. Eng. Rep. 70(3-6), 92 (2010)
CrossRef ADS Google scholar
[26]
H. Choi, Y. C. Park, Y. H. Kim, and Y. S. Lee, Ambient carbon dioxide capture by boron-rich boron nitride nanotube., J. Am. Chem. Soc. 133(7), 2084 (2011)
CrossRef ADS Google scholar
[27]
Y. Xie, Y. P. Huo, and J. M. Zhang, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci. 258(17), 6391 (2012)
CrossRef ADS Google scholar
[28]
X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study, J. Mol. Struct. 901(1-3), 103 (2009)
CrossRef ADS Google scholar
[29]
Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, and C. C. Sun, Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes, J. Mol. Struct. 948(1-3), 83 (2010)
CrossRef ADS Google scholar
[30]
M. T. Baei, A. R. Soltani, A. V. Moradi, and E. T. Lemeski, Adsorption properties of N2O on (6,0), (7,0), and (8,0) zigzag single-walled boron nitride nanotubes: A computational study, Comput. Theor. Chem. 970(1-3), 30 (2011)
CrossRef ADS Google scholar
[31]
J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev., B Condens. Matter 45(23), 13244 (1992)
CrossRef ADS Google scholar
[32]
B. Delley, From molecules to solids with the DMol[sup 3] approach, J. Chem. Phys. 113(18), 7756 (2000)
CrossRef ADS Google scholar
[33]
A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, First-principles study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+ U calculations, Phys. Rev. B 78(3), 035107 (2008)
CrossRef ADS Google scholar
[34]
A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)
CrossRef ADS Google scholar
[35]
B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B 66(15), 155125 (2002)
CrossRef ADS Google scholar
[36]
S. L. Yue and H. Zhang, First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs, Front. Phys. 7(3), 353 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(722 KB)

Accesses

Citations

Detail

Sections
Recommended

/