Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs
Juan Ren, Ning-Chao Zhang, Peng Wang, Chao Ning, Hong Zhang, Xiao-Juan Peng
Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs
Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom–doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5d, 6s, and B-2p, N-2p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.
density functional theory / RE atoms / single-walled BN nanotubes / doping
[1] |
S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348), 56 (1991)
CrossRef
ADS
Google scholar
|
[2] |
R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes — the route toward applications, Science 297(5582), 787 (2002)
CrossRef
ADS
Google scholar
|
[3] |
D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106(3), 1105 (2006)
CrossRef
ADS
Google scholar
|
[4] |
V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, M. E. Levin-shtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, New York: Wiley, 2001
|
[5] |
D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Adv. Mater. 19(18), 2413 (2007)
CrossRef
ADS
Google scholar
|
[6] |
Z. Zhou and Y. F. Li, How different are BN nanotubes from carbon nanotubes? J. Comput. Theor. Nanosci. 6(2), 327 (2009)
CrossRef
ADS
Google scholar
|
[7] |
C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization, Phys. Rev. B 74(15), 153413 (2006)
CrossRef
ADS
Google scholar
|
[8] |
L. Lai, W. Song, J. Lu, Z. Gao, S. Nagase, M. Ni, W. N. Mei, J. Liu, D. Yu, and H. Ye, Structural and electronic properties of fluorinated boron nitride nanotubes., J Phys Chem B 110(29), 14092 (2006)
CrossRef
ADS
Google scholar
|
[9] |
J. Zhang, K. P. Loh, W. S. Yang, and P. Wu, Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption, Appl. Phys. Lett. 87(24), 243105 (2005)
CrossRef
ADS
Google scholar
|
[10] |
C. Jo, C. Kim, and Y. H. Lee, Electronic properties of K-doped single-wall carbon nanotube bundles, Phys. Rev. B 65(3), 035420 (2002)
CrossRef
ADS
Google scholar
|
[11] |
J. Zhao, A. Buldum, J. Han, and J. P. Lu, 0, First-principles study of Li-intercalated carbon nanotube ropes., Phys. Rev. Lett. 85(8), 1706 (2000)
CrossRef
ADS
Google scholar
|
[12] |
J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, DFT study on nano structures of Sn/CNT complex for potential li-ion battery application, J. Phys. Chem. C 113(31), 14015 (2009)
CrossRef
ADS
Google scholar
|
[13] |
E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67(20), 201401 (2003)
CrossRef
ADS
Google scholar
|
[14] |
E. Durgun, S. Dag, S. Ciraci, and O. Gulseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes, J. Phys. Chem. B 108(2), 575 (2004)
CrossRef
ADS
Google scholar
|
[15] |
Y. L. Mao, X. H. Yan, and Y. Xiao, First-principles study of transition-metal-doped single-walled carbon nanotubes, Nanotechnology 16(12), 3092 (2005)
CrossRef
ADS
Google scholar
|
[16] |
A. Udomvech, T. Kerdcharoen, and T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length, Chem. Phys. Lett. 406(1-3), 161 (2005)
CrossRef
ADS
Google scholar
|
[17] |
Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9(2), 200 (2014)
CrossRef
ADS
Google scholar
|
[18] |
J. Ren, H. Zhang, and X. L. Cheng, Electronic and magnetic properties of all 3 d transition-metal-doped ZnO monolayers, Int. J. Quantum Chem. 113(19), 2243 (2013)
CrossRef
ADS
Google scholar
|
[19] |
X. Wu and X. C. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: A density-functional study, J Chem Phys 125(4), 44711 (2006)
CrossRef
ADS
Google scholar
|
[20] |
S. F. Wang, Y. Zhang, J. M. Zhang, K. W. Xu, and V. Ji, Electronic structure and optical property of 3d transition metal doped (5,5) boron nitride nanotube, Appl. Phys. A 109(3), 601 (2012)
CrossRef
ADS
Google scholar
|
[21] |
R. J. Baierle, T. M. Schmidt, and A. Fazzio, Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes, Solid State Commun. 142(1-2), 49 (2007)
CrossRef
ADS
Google scholar
|
[22] |
Y. F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, and B. Berzina, Atomic and electronic structure of single-walled BN nanotubes containing N vacancies as well as C and O substitutes of N atoms, Eur. Phys. J. B 67(4), 519 (2009)
CrossRef
ADS
Google scholar
|
[23] |
C. S. Guo, W. J. Fan, and R. Q. Zhang, Spin polarization of the injected carriers in C-doped BN nanotubes, Solid State Commun. 137(5), 246 (2006)
CrossRef
ADS
Google scholar
|
[24] |
C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanotubes, J Nanosci Nanotechnol 4(1-2), 35 (2004)
CrossRef
ADS
Google scholar
|
[25] |
C. Zhi, Y. Bando, C. Tang, and D. Golberg, Boron nitride nanotubes, Mater. Sci. Eng. Rep. 70(3-6), 92 (2010)
CrossRef
ADS
Google scholar
|
[26] |
H. Choi, Y. C. Park, Y. H. Kim, and Y. S. Lee, Ambient carbon dioxide capture by boron-rich boron nitride nanotube., J. Am. Chem. Soc. 133(7), 2084 (2011)
CrossRef
ADS
Google scholar
|
[27] |
Y. Xie, Y. P. Huo, and J. M. Zhang, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci. 258(17), 6391 (2012)
CrossRef
ADS
Google scholar
|
[28] |
X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study, J. Mol. Struct. 901(1-3), 103 (2009)
CrossRef
ADS
Google scholar
|
[29] |
Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, and C. C. Sun, Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes, J. Mol. Struct. 948(1-3), 83 (2010)
CrossRef
ADS
Google scholar
|
[30] |
M. T. Baei, A. R. Soltani, A. V. Moradi, and E. T. Lemeski, Adsorption properties of N2O on (6,0), (7,0), and (8,0) zigzag single-walled boron nitride nanotubes: A computational study, Comput. Theor. Chem. 970(1-3), 30 (2011)
CrossRef
ADS
Google scholar
|
[31] |
J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev., B Condens. Matter 45(23), 13244 (1992)
CrossRef
ADS
Google scholar
|
[32] |
B. Delley, From molecules to solids with the DMol[sup 3] approach, J. Chem. Phys. 113(18), 7756 (2000)
CrossRef
ADS
Google scholar
|
[33] |
A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, First-principles study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA+ U calculations, Phys. Rev. B 78(3), 035107 (2008)
CrossRef
ADS
Google scholar
|
[34] |
A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)
CrossRef
ADS
Google scholar
|
[35] |
B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B 66(15), 155125 (2002)
CrossRef
ADS
Google scholar
|
[36] |
S. L. Yue and H. Zhang, First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs, Front. Phys. 7(3), 353 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |