Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate

Shu-Yuan Wu (吴淑媛), Hong-Hua Zhong (钟宏华), Jia-Hao Huang (黄嘉豪), Xi-Zhou Qin (秦锡洲), Chao-Hong Lee (李朝红)

PDF(544 KB)
PDF(544 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 101204. DOI: 10.1007/s11467-015-0530-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate

Author information +
History +

Abstract

We investigate the fragmentation in a two-mode Bose–Einstein condensate with Josephson coupling. We explore how the fragmentation and entropy of the ground state depend on the intermode asymmetry and interparticle interactions. Owing to the interplay between the asymmetry and the interactions, a sequence of notches and plateaus in the fragmentation appears with the single-atom tunneling and interaction blockade, respectively. We then analyze the dynamical properties of the fragmentation in three typical quenches of the asymmetry: linear, sudden, and periodic quenches. In a linear quench, the final state is a fragmented state due to the sequential Landau–Zener tunneling, which can be analytically explained by applying the two-level Landau–Zener formula for each avoided level crossing. In a sudden quench, the fragmentation exhibits persistent fluctuations that sensitively depend on the interparticle interactions and intermode coupling. In a periodic quench, the fragmentation is modulated by the periodic driving, and a suitable modulation may allow one to control the fragmentation.

Keywords

fragmentation / two-mode BEC / quantum quench

Cite this article

Download citation ▾
Shu-Yuan Wu (吴淑媛), Hong-Hua Zhong (钟宏华), Jia-Hao Huang (黄嘉豪), Xi-Zhou Qin (秦锡洲), Chao-Hong Lee (李朝红). Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 101204 https://doi.org/10.1007/s11467-015-0530-9

References

[1]
O. Penrose and L. Onsager, Bose˗Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
CrossRef ADS Google scholar
[2]
A. J. Leggett, Bose˗Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73(2), 307 (2001)
CrossRef ADS Google scholar
[3]
P. Bader and U. R. Fischer, Fragmented many-body ground states for scalar Bosons in a single trap, Phys. Rev. Lett. 103(6), 060402 (2009)
CrossRef ADS Google scholar
[4]
U. R. Fischer and B. Xiong, Robustness of fragmented condensate many-body states for continuous distribution amplitudes in Fock space, Phys. Rev. A 88(5), 053602 (2013)
CrossRef ADS Google scholar
[5]
A. I. Streltsov, L. S. Cederbaum, and N. Moiseyev, Ground-state fragmentation of repulsive Bose˗Einstein condensates in double-trap potentials, Phys. Rev. A 70(5), 053607 (2004)
CrossRef ADS Google scholar
[6]
R. Kanamoto, H. Saito, and M. Ueda, Quantum phase transition in one-dimensional Bose˗Einstein condensates with attractive interactions, Phys. Rev. A 67(1), 013608 (2003)
CrossRef ADS Google scholar
[7]
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of two overlapping Bose˗Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
CrossRef ADS Google scholar
[8]
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose˗Einstein condensate, Phys. Rev. Lett. 80(10), 2027 (1998)
CrossRef ADS Google scholar
[9]
T. L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 Bose gas, Phys. Rev. Lett. 84(18), 4031 (2000)
CrossRef ADS Google scholar
[10]
O. E. Müstecaplıoğlu, M. Zhang, S. Yi, L. You, and C. P. Sun, Dynamic fragmentation of a spinor Bose˗Einstein condensate, Phys. Rev. A 68(6), 063616 (2003)
CrossRef ADS Google scholar
[11]
A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard, and W. Ketterle, Sodium Bose˗Einstein condensates in the in the F= 2 state in a large-volume optical trap, Phys. Rev. Lett. 90(9), 090401 (2003)
CrossRef ADS Google scholar
[12]
H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Dynamics of F= 2 spinor Bose˗Einstein condensates, Phys. Rev. Lett. 92(4), 040402 (2004)
CrossRef ADS Google scholar
[13]
T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Magnetic field dependence of the dynamics of 87Rb spin-2 Bose˗Einstein condensates, Phys. Rev. A 69(6), 063604 (2004)
CrossRef ADS Google scholar
[14]
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose˗Einstein condensate, Nature 449(7162), 579 (2007)
CrossRef ADS Google scholar
[15]
R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 59(5), 3868 (1999)
CrossRef ADS Google scholar
[16]
L. Cederbaum and A. Streltsov, Best mean-field for condensates, Phys. Lett. A 318(6), 564 (2003)
CrossRef ADS Google scholar
[17]
E. J. Mueller, T. L. Ho, M. Ueda, and G. Baym, Fragmentation of Bose˗Einstein condensates, Phys. Rev. A 74(3), 033612 (2006)
CrossRef ADS Google scholar
[18]
T. L. Ho and C. Ciobanu, The Schrödinger cat family in attractive Bose gases, J. Low Temp. Phys. 135(3-4), 257 (2004)
CrossRef ADS Google scholar
[19]
Q. Zhu, Q. Zhang, and B. Wu, Extended two-site Bose–Hubbard model with pair tunneling: Spontaneous symmetry breaking, effective ground state and fragmentation, J. Phys. At. Mol. Opt. Phys. 48(4), 045301 (2015)
CrossRef ADS Google scholar
[20]
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions, Phys. Rev. A 89(2), 023602 (2014)
CrossRef ADS Google scholar
[21]
L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose˗Einstein condensate, Nature 443(7109), 312 (2006)
CrossRef ADS Google scholar
[22]
S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature 449(7160), 324 (2007)
CrossRef ADS Google scholar
[23]
Y. A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman, Many-body Landau˗Zener dynamics in coupled one-dimensional Bose liquids, Nat. Phys. 7(1), 61 (2011)
CrossRef ADS Google scholar
[24]
D. Chen, M. White, C. Borries, and B. DeMarco, Quantum quench of an atomic Mott insulator, Phys. Rev. Lett. 106(23), 235304 (2011)
CrossRef ADS Google scholar
[25]
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, M. Grobner, A. J. Daley, and H. C. Nägerl, Observation of many-body dynamics in long-range tunneling after a quantum quench, Science 344(6189), 1259 (2014)
CrossRef ADS Google scholar
[26]
C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose˗Einstein condensates, Phys. Rev. A 64(5), 053604 (2001)
CrossRef ADS Google scholar
[27]
K. Sengupta, S. Powell, and S. Sachdev, Quench dynamics across quantum critical points, Phys. Rev. A 69(5), 053616 (2004)
CrossRef ADS Google scholar
[28]
P. Calabrese and J. Cardy, Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96(13), 136801 (2006)
CrossRef ADS Google scholar
[29]
C. Kollath, A. M. Läuchli, and E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model, Phys. Rev. Lett. 98(18), 180601 (2007)
CrossRef ADS Google scholar
[30]
G. Roux, Quenches in quantum many-body systems: One-dimensional Bose˗Hubbard model reexamined, Phys. Rev. A 79(2), 021608 (2009)
CrossRef ADS Google scholar
[31]
B. Sciolla and G. Biroli, Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose˗Hubbard model, Phys. Rev. Lett. 105(22), 220401 (2010)
CrossRef ADS Google scholar
[32]
J. Dziarmaga and M. Tylutki, Excitation energy after a smooth quench in a Luttinger liquid, Phys. Rev. B 84(21), 214522 (2011)
CrossRef ADS Google scholar
[33]
D. Poletti and C. Kollath, Slow quench dynamics of periodically driven quantum gases, Phys. Rev. A 84(1), 013615 (2011)
CrossRef ADS Google scholar
[34]
F. H. L. Essler, S. Evangelisti, and M. Fagotti, Dynamical correlations after a quantum quench, Phys. Rev. Lett. 109(24), 247206 (2012)
CrossRef ADS Google scholar
[35]
X. Yin and L. Radzihovsky, Quench dynamics of a strongly interacting resonant Bose gas, Phys. Rev. A 88(6), 063611 (2013)
CrossRef ADS Google scholar
[36]
J. S. Bernier, R. Citro, C. Kollath, and E. Orignac, Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas, Phys. Rev. Lett. 112(6), 065301 (2014)
CrossRef ADS Google scholar
[37]
E. J. Torres-Herrera and L. F. Santos, Quench dynamics of isolated many-body quantum systems, Phys. Rev. A 89(4), 043620 (2014)
CrossRef ADS Google scholar
[38]
M. Eckstein, M. Kollar, and P. Werner, Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett. 103(5), 056403 (2009)
CrossRef ADS Google scholar
[39]
M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103(10), 100403 (2009)
CrossRef ADS Google scholar
[40]
M. Cazalilla and M. Rigol, Focus on dynamics and thermalization in isolated quantum many-body systems, New J. Phys. 12(5), 055006 (2010)
CrossRef ADS Google scholar
[41]
A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83(3), 863 (2011)
CrossRef ADS Google scholar
[42]
A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized thermalization in an integrable lattice system, Phys. Rev. Lett. 106(14), 140405 (2011)
CrossRef ADS Google scholar
[43]
C. A. Parra-Murillo, J. Madroñero, and S. Wimberger, Quantum diffusion and thermalization at resonant tunneling, Phys. Rev. A 89(5), 053610 (2014)
CrossRef ADS Google scholar
[44]
W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95(10), 105701 (2005)
CrossRef ADS Google scholar
[45]
C. Lee, Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose˗Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)
CrossRef ADS Google scholar
[46]
J. Dziarmaga and M. M. Rams, Dynamics of an inhomogeneous quantum phase transition, New J. Phys. 12(5), 055007 (2010)
CrossRef ADS Google scholar
[47]
J. Dziarmaga, M. Tylutki, and W. H. Zurek, Quench from Mott insulator to superfluid, Phys. Rev. B 86(14), 144521 (2012)
CrossRef ADS Google scholar
[48]
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley, and H. C. Nägerl, Quantum quench in an atomic one-dimensional Ising chain, Phys. Rev. Lett. 111(5), 053003 (2013)
CrossRef ADS Google scholar
[49]
U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys. 8(3), 213 (2012)
CrossRef ADS Google scholar
[50]
M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schausz, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system, Nature 481(7382), 484 (2012)
CrossRef ADS Google scholar
[51]
J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Expansion dynamics of interacting Bosons in homogeneous lattices in one and two dimensions, Phys. Rev. Lett. 110(20), 205301 (2013)
CrossRef ADS Google scholar
[52]
P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature 511(7508), 202 (2014)
CrossRef ADS Google scholar
[53]
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)
CrossRef ADS Google scholar
[54]
X. X. Yang and Y. Wu, SU(2) coherent state description of two-mode Bose–Einstein condensates, Commum. Theor. Phys. 37(5), 539 (2002)
CrossRef ADS Google scholar
[55]
L. M. Kuang, J. H. Li, and B. Hu, Polarization and decoherence in a two-component Bose–Einstein condensate, J. Opt. B 4(5), 295 (2002)
CrossRef ADS Google scholar
[56]
A. H. Zeng and L. M. Kuang, Influence of quantum entanglement on quantum tunnelling between two atomic Bose˗Einstein condensates, Phys. Lett. A 338(3˗5), 323 (2005)
[57]
C. Lee, Adiabatic Mach˗Zehnder interferometry on a quantized Bose˗Josephson junction, Phys. Rev. Lett. 97(15), 150402 (2006)
CrossRef ADS Google scholar
[58]
D. Witthaut, F. Trimborn, and S. Wimberger, Dissipation induced coherence of a two-mode Bose˗Einstein condensate, Phys. Rev. Lett. 101(20), 200402 (2008)
CrossRef ADS Google scholar
[59]
X. X. Yang and Y. Wu, Effective two-state model and NOON states for double-well Bose˗Einstein condensates in strong-interaction regime, Commum. Theor. Phys. 52(2), 244 (2009)
CrossRef ADS Google scholar
[60]
F. Trimborn, D. Witthaut, V. Kegel, and H. Korsch, Nonlinear Landau˗Zener tunneling in quantum phase space, New J. Phys. 12(5), 053010 (2010)
CrossRef ADS Google scholar
[61]
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
CrossRef ADS Google scholar
[62]
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose˗Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
CrossRef ADS Google scholar
[63]
A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose˗Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7(1), 86 (2012)
CrossRef ADS Google scholar
[64]
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J. Phys. At. Mol. Opt. Phys. 40(10), R61 (2007)
CrossRef ADS Google scholar
[65]
W. D. Li, Y. Zhang, and J. Q. Liang, Energy-band structure and intrinsic coherent properties in two weakly linked Bose˗Einstein condensates, Phys. Rev. A 67(6), 065601 (2003)
CrossRef ADS Google scholar
[66]
C. Lee, L. B. Fu, and Y. S. Kivshar, Many-body quantum coherence and interaction blockade in Josephson-linked Bose˗Einstein condensates, Europhys. Lett. 81(6), 60006 (2008)
CrossRef ADS Google scholar
[67]
D. Raventós, T. Graß, and B. Juliá-Díaz, Cold bosons in optical lattices: Correlations, localization, and fragmentation, arXiv: 1410.7280
[68]
B. Juli’a-Diaz, D. Dagnino, M. Lewenstein, J. Martorell, and A. Polls, Macroscopic self-trapping in Bose˗Einstein condensates: Analysis of a dynamical quantum phase transition, Phys. Rev. A 81(2), 023615 (2010)
CrossRef ADS Google scholar
[69]
C. Zener, Non-Adiabatic crossing of energy levels, Proceedings of the Royal Society of London Series A 137, 696 (1932)
CrossRef ADS Google scholar
[70]
H. Zhong, Q. Xie, J. Huang, X. Qin, H. Deng, J. Xu, and C. Lee, Photon-induced sideband transitions in a manybody Landau˗Zener process, Phys. Rev. A 90(2), 023635 (2014)
CrossRef ADS Google scholar
[71]
E. J. Torres-Herrera and L. F. Santos, Non-exponential fidelity decay in isolated interacting quantum systems, Phys. Rev. A 90(3), 033623 (2014)
CrossRef ADS Google scholar
[72]
A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of photon-assisted tunneling in a Bose˗Einstein condensate, Phys. Rev. Lett. 95(20), 200401 (2005)
CrossRef ADS Google scholar
[73]
T. Jinasundera, C. Weiss, and M. Holthaus, Manyparticle tunnelling in a driven Bosonic Josephson junction, Chem. Phys. 322(1˗2), 118 (2006)
[74]
M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep. 304(5˗6), 229 (1998)
[75]
G. Liu, N. Hao, S. L. Zhu, and W. M. Liu, Topological superfluid transition induced by a periodically driven optical lattice, Phys. Rev. A 86(1), 013639 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2015 The Author(s). This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(544 KB)

Accesses

Citations

Detail

Sections
Recommended

/