Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate
Shu-Yuan Wu (吴淑媛), Hong-Hua Zhong (钟宏华), Jia-Hao Huang (黄嘉豪), Xi-Zhou Qin (秦锡洲), Chao-Hong Lee (李朝红)
Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate
We investigate the fragmentation in a two-mode Bose–Einstein condensate with Josephson coupling. We explore how the fragmentation and entropy of the ground state depend on the intermode asymmetry and interparticle interactions. Owing to the interplay between the asymmetry and the interactions, a sequence of notches and plateaus in the fragmentation appears with the single-atom tunneling and interaction blockade, respectively. We then analyze the dynamical properties of the fragmentation in three typical quenches of the asymmetry: linear, sudden, and periodic quenches. In a linear quench, the final state is a fragmented state due to the sequential Landau–Zener tunneling, which can be analytically explained by applying the two-level Landau–Zener formula for each avoided level crossing. In a sudden quench, the fragmentation exhibits persistent fluctuations that sensitively depend on the interparticle interactions and intermode coupling. In a periodic quench, the fragmentation is modulated by the periodic driving, and a suitable modulation may allow one to control the fragmentation.
fragmentation / two-mode BEC / quantum quench
[1] |
O. Penrose and L. Onsager, Bose˗Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
CrossRef
ADS
Google scholar
|
[2] |
A. J. Leggett, Bose˗Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73(2), 307 (2001)
CrossRef
ADS
Google scholar
|
[3] |
P. Bader and U. R. Fischer, Fragmented many-body ground states for scalar Bosons in a single trap, Phys. Rev. Lett. 103(6), 060402 (2009)
CrossRef
ADS
Google scholar
|
[4] |
U. R. Fischer and B. Xiong, Robustness of fragmented condensate many-body states for continuous distribution amplitudes in Fock space, Phys. Rev. A 88(5), 053602 (2013)
CrossRef
ADS
Google scholar
|
[5] |
A. I. Streltsov, L. S. Cederbaum, and N. Moiseyev, Ground-state fragmentation of repulsive Bose˗Einstein condensates in double-trap potentials, Phys. Rev. A 70(5), 053607 (2004)
CrossRef
ADS
Google scholar
|
[6] |
R. Kanamoto, H. Saito, and M. Ueda, Quantum phase transition in one-dimensional Bose˗Einstein condensates with attractive interactions, Phys. Rev. A 67(1), 013608 (2003)
CrossRef
ADS
Google scholar
|
[7] |
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of two overlapping Bose˗Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
CrossRef
ADS
Google scholar
|
[8] |
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose˗Einstein condensate, Phys. Rev. Lett. 80(10), 2027 (1998)
CrossRef
ADS
Google scholar
|
[9] |
T. L. Ho and S. K. Yip, Fragmented and single condensate ground states of spin-1 Bose gas, Phys. Rev. Lett. 84(18), 4031 (2000)
CrossRef
ADS
Google scholar
|
[10] |
O. E. Müstecaplıoğlu, M. Zhang, S. Yi, L. You, and C. P. Sun, Dynamic fragmentation of a spinor Bose˗Einstein condensate, Phys. Rev. A 68(6), 063616 (2003)
CrossRef
ADS
Google scholar
|
[11] |
A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard, and W. Ketterle, Sodium Bose˗Einstein condensates in the in the F= 2 state in a large-volume optical trap, Phys. Rev. Lett. 90(9), 090401 (2003)
CrossRef
ADS
Google scholar
|
[12] |
H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Dynamics of F= 2 spinor Bose˗Einstein condensates, Phys. Rev. Lett. 92(4), 040402 (2004)
CrossRef
ADS
Google scholar
|
[13] |
T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Magnetic field dependence of the dynamics of 87Rb spin-2 Bose˗Einstein condensates, Phys. Rev. A 69(6), 063604 (2004)
CrossRef
ADS
Google scholar
|
[14] |
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose˗Einstein condensate, Nature 449(7162), 579 (2007)
CrossRef
ADS
Google scholar
|
[15] |
R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 59(5), 3868 (1999)
CrossRef
ADS
Google scholar
|
[16] |
L. Cederbaum and A. Streltsov, Best mean-field for condensates, Phys. Lett. A 318(6), 564 (2003)
CrossRef
ADS
Google scholar
|
[17] |
E. J. Mueller, T. L. Ho, M. Ueda, and G. Baym, Fragmentation of Bose˗Einstein condensates, Phys. Rev. A 74(3), 033612 (2006)
CrossRef
ADS
Google scholar
|
[18] |
T. L. Ho and C. Ciobanu, The Schrödinger cat family in attractive Bose gases, J. Low Temp. Phys. 135(3-4), 257 (2004)
CrossRef
ADS
Google scholar
|
[19] |
Q. Zhu, Q. Zhang, and B. Wu, Extended two-site Bose–Hubbard model with pair tunneling: Spontaneous symmetry breaking, effective ground state and fragmentation, J. Phys. At. Mol. Opt. Phys. 48(4), 045301 (2015)
CrossRef
ADS
Google scholar
|
[20] |
K. Sakmann, A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions, Phys. Rev. A 89(2), 023602 (2014)
CrossRef
ADS
Google scholar
|
[21] |
L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose˗Einstein condensate, Nature 443(7109), 312 (2006)
CrossRef
ADS
Google scholar
|
[22] |
S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature 449(7160), 324 (2007)
CrossRef
ADS
Google scholar
|
[23] |
Y. A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman, Many-body Landau˗Zener dynamics in coupled one-dimensional Bose liquids, Nat. Phys. 7(1), 61 (2011)
CrossRef
ADS
Google scholar
|
[24] |
D. Chen, M. White, C. Borries, and B. DeMarco, Quantum quench of an atomic Mott insulator, Phys. Rev. Lett. 106(23), 235304 (2011)
CrossRef
ADS
Google scholar
|
[25] |
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, M. Grobner, A. J. Daley, and H. C. Nägerl, Observation of many-body dynamics in long-range tunneling after a quantum quench, Science 344(6189), 1259 (2014)
CrossRef
ADS
Google scholar
|
[26] |
C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose˗Einstein condensates, Phys. Rev. A 64(5), 053604 (2001)
CrossRef
ADS
Google scholar
|
[27] |
K. Sengupta, S. Powell, and S. Sachdev, Quench dynamics across quantum critical points, Phys. Rev. A 69(5), 053616 (2004)
CrossRef
ADS
Google scholar
|
[28] |
P. Calabrese and J. Cardy, Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96(13), 136801 (2006)
CrossRef
ADS
Google scholar
|
[29] |
C. Kollath, A. M. Läuchli, and E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model, Phys. Rev. Lett. 98(18), 180601 (2007)
CrossRef
ADS
Google scholar
|
[30] |
G. Roux, Quenches in quantum many-body systems: One-dimensional Bose˗Hubbard model reexamined, Phys. Rev. A 79(2), 021608 (2009)
CrossRef
ADS
Google scholar
|
[31] |
B. Sciolla and G. Biroli, Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose˗Hubbard model, Phys. Rev. Lett. 105(22), 220401 (2010)
CrossRef
ADS
Google scholar
|
[32] |
J. Dziarmaga and M. Tylutki, Excitation energy after a smooth quench in a Luttinger liquid, Phys. Rev. B 84(21), 214522 (2011)
CrossRef
ADS
Google scholar
|
[33] |
D. Poletti and C. Kollath, Slow quench dynamics of periodically driven quantum gases, Phys. Rev. A 84(1), 013615 (2011)
CrossRef
ADS
Google scholar
|
[34] |
F. H. L. Essler, S. Evangelisti, and M. Fagotti, Dynamical correlations after a quantum quench, Phys. Rev. Lett. 109(24), 247206 (2012)
CrossRef
ADS
Google scholar
|
[35] |
X. Yin and L. Radzihovsky, Quench dynamics of a strongly interacting resonant Bose gas, Phys. Rev. A 88(6), 063611 (2013)
CrossRef
ADS
Google scholar
|
[36] |
J. S. Bernier, R. Citro, C. Kollath, and E. Orignac, Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas, Phys. Rev. Lett. 112(6), 065301 (2014)
CrossRef
ADS
Google scholar
|
[37] |
E. J. Torres-Herrera and L. F. Santos, Quench dynamics of isolated many-body quantum systems, Phys. Rev. A 89(4), 043620 (2014)
CrossRef
ADS
Google scholar
|
[38] |
M. Eckstein, M. Kollar, and P. Werner, Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett. 103(5), 056403 (2009)
CrossRef
ADS
Google scholar
|
[39] |
M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103(10), 100403 (2009)
CrossRef
ADS
Google scholar
|
[40] |
M. Cazalilla and M. Rigol, Focus on dynamics and thermalization in isolated quantum many-body systems, New J. Phys. 12(5), 055006 (2010)
CrossRef
ADS
Google scholar
|
[41] |
A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83(3), 863 (2011)
CrossRef
ADS
Google scholar
|
[42] |
A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized thermalization in an integrable lattice system, Phys. Rev. Lett. 106(14), 140405 (2011)
CrossRef
ADS
Google scholar
|
[43] |
C. A. Parra-Murillo, J. Madroñero, and S. Wimberger, Quantum diffusion and thermalization at resonant tunneling, Phys. Rev. A 89(5), 053610 (2014)
CrossRef
ADS
Google scholar
|
[44] |
W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95(10), 105701 (2005)
CrossRef
ADS
Google scholar
|
[45] |
C. Lee, Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose˗Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)
CrossRef
ADS
Google scholar
|
[46] |
J. Dziarmaga and M. M. Rams, Dynamics of an inhomogeneous quantum phase transition, New J. Phys. 12(5), 055007 (2010)
CrossRef
ADS
Google scholar
|
[47] |
J. Dziarmaga, M. Tylutki, and W. H. Zurek, Quench from Mott insulator to superfluid, Phys. Rev. B 86(14), 144521 (2012)
CrossRef
ADS
Google scholar
|
[48] |
F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley, and H. C. Nägerl, Quantum quench in an atomic one-dimensional Ising chain, Phys. Rev. Lett. 111(5), 053003 (2013)
CrossRef
ADS
Google scholar
|
[49] |
U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will, S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms, Nat. Phys. 8(3), 213 (2012)
CrossRef
ADS
Google scholar
|
[50] |
M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schausz, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system, Nature 481(7382), 484 (2012)
CrossRef
ADS
Google scholar
|
[51] |
J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Expansion dynamics of interacting Bosons in homogeneous lattices in one and two dimensions, Phys. Rev. Lett. 110(20), 205301 (2013)
CrossRef
ADS
Google scholar
|
[52] |
P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature 511(7508), 202 (2014)
CrossRef
ADS
Google scholar
|
[53] |
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Quantum dynamics of an atomic Bose˗Einstein condensate in a double-well potential, Phys. Rev. A 55(6), 4318 (1997)
CrossRef
ADS
Google scholar
|
[54] |
X. X. Yang and Y. Wu, SU(2) coherent state description of two-mode Bose–Einstein condensates, Commum. Theor. Phys. 37(5), 539 (2002)
CrossRef
ADS
Google scholar
|
[55] |
L. M. Kuang, J. H. Li, and B. Hu, Polarization and decoherence in a two-component Bose–Einstein condensate, J. Opt. B 4(5), 295 (2002)
CrossRef
ADS
Google scholar
|
[56] |
A. H. Zeng and L. M. Kuang, Influence of quantum entanglement on quantum tunnelling between two atomic Bose˗Einstein condensates, Phys. Lett. A 338(3˗5), 323 (2005)
|
[57] |
C. Lee, Adiabatic Mach˗Zehnder interferometry on a quantized Bose˗Josephson junction, Phys. Rev. Lett. 97(15), 150402 (2006)
CrossRef
ADS
Google scholar
|
[58] |
D. Witthaut, F. Trimborn, and S. Wimberger, Dissipation induced coherence of a two-mode Bose˗Einstein condensate, Phys. Rev. Lett. 101(20), 200402 (2008)
CrossRef
ADS
Google scholar
|
[59] |
X. X. Yang and Y. Wu, Effective two-state model and NOON states for double-well Bose˗Einstein condensates in strong-interaction regime, Commum. Theor. Phys. 52(2), 244 (2009)
CrossRef
ADS
Google scholar
|
[60] |
F. Trimborn, D. Witthaut, V. Kegel, and H. Korsch, Nonlinear Landau˗Zener tunneling in quantum phase space, New J. Phys. 12(5), 053010 (2010)
CrossRef
ADS
Google scholar
|
[61] |
C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
CrossRef
ADS
Google scholar
|
[62] |
S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose˗Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
CrossRef
ADS
Google scholar
|
[63] |
A. Sinatra, J. C. Dornstetter, and Y. Castin, Spin squeezing in Bose˗Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys. 7(1), 86 (2012)
CrossRef
ADS
Google scholar
|
[64] |
R. Gati and M. K. Oberthaler, A bosonic Josephson junction, J. Phys. At. Mol. Opt. Phys. 40(10), R61 (2007)
CrossRef
ADS
Google scholar
|
[65] |
W. D. Li, Y. Zhang, and J. Q. Liang, Energy-band structure and intrinsic coherent properties in two weakly linked Bose˗Einstein condensates, Phys. Rev. A 67(6), 065601 (2003)
CrossRef
ADS
Google scholar
|
[66] |
C. Lee, L. B. Fu, and Y. S. Kivshar, Many-body quantum coherence and interaction blockade in Josephson-linked Bose˗Einstein condensates, Europhys. Lett. 81(6), 60006 (2008)
CrossRef
ADS
Google scholar
|
[67] |
D. Raventós, T. Graß, and B. Juliá-Díaz, Cold bosons in optical lattices: Correlations, localization, and fragmentation, arXiv: 1410.7280
|
[68] |
B. Juli’a-Diaz, D. Dagnino, M. Lewenstein, J. Martorell, and A. Polls, Macroscopic self-trapping in Bose˗Einstein condensates: Analysis of a dynamical quantum phase transition, Phys. Rev. A 81(2), 023615 (2010)
CrossRef
ADS
Google scholar
|
[69] |
C. Zener, Non-Adiabatic crossing of energy levels, Proceedings of the Royal Society of London Series A 137, 696 (1932)
CrossRef
ADS
Google scholar
|
[70] |
H. Zhong, Q. Xie, J. Huang, X. Qin, H. Deng, J. Xu, and C. Lee, Photon-induced sideband transitions in a manybody Landau˗Zener process, Phys. Rev. A 90(2), 023635 (2014)
CrossRef
ADS
Google scholar
|
[71] |
E. J. Torres-Herrera and L. F. Santos, Non-exponential fidelity decay in isolated interacting quantum systems, Phys. Rev. A 90(3), 033623 (2014)
CrossRef
ADS
Google scholar
|
[72] |
A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of photon-assisted tunneling in a Bose˗Einstein condensate, Phys. Rev. Lett. 95(20), 200401 (2005)
CrossRef
ADS
Google scholar
|
[73] |
T. Jinasundera, C. Weiss, and M. Holthaus, Manyparticle tunnelling in a driven Bosonic Josephson junction, Chem. Phys. 322(1˗2), 118 (2006)
|
[74] |
M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep. 304(5˗6), 229 (1998)
|
[75] |
G. Liu, N. Hao, S. L. Zhu, and W. M. Liu, Topological superfluid transition induced by a periodically driven optical lattice, Phys. Rev. A 86(1), 013639 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |