Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations

Jian-Bo Liu, Lin Long, Yu-Shi Zhang, Yue-Ping Wang, Feng-Shou Liu, Wei-Yao Xu, Ming-Ji Zong, Lei Ma, Wen-Qi Liu, Hui Zhang, Jiao Yan, Jia-Qi Chen, Ying-Lu Ji, Xiao-Chun Wu

PDF(636 KB)
PDF(636 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (3) : 118501. DOI: 10.1007/s11467-015-0528-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations

Author information +
History +

Abstract

Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostructures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the “hot spot” effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt content, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.

Keywords

gold / platinum / core-shell / nanorod / FDTD

Cite this article

Download citation ▾
Jian-Bo Liu, Lin Long, Yu-Shi Zhang, Yue-Ping Wang, Feng-Shou Liu, Wei-Yao Xu, Ming-Ji Zong, Lei Ma, Wen-Qi Liu, Hui Zhang, Jiao Yan, Jia-Qi Chen, Ying-Lu Ji, Xiao-Chun Wu. Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations. Front. Phys., 2016, 11(3): 118501 https://doi.org/10.1007/s11467-015-0528-3

References

[1]
X. H. Xia and Y. N. Xia, Gold nanocages as multifunctional materials for nanomedicine, Front. Phys. 9(3), 378 (2014)
CrossRef ADS Google scholar
[2]
S. Linic, P. Christopher, H. Xin, and A. Marimuthu, Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties, Acc. Chem. Res. 46(8), 1890 (2013)
CrossRef ADS Google scholar
[3]
R. Ghosh Chaudhuri, and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112(4), 2373 (2012)
CrossRef ADS Google scholar
[4]
O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)
CrossRef ADS Google scholar
[5]
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
CrossRef ADS Google scholar
[6]
Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
CrossRef ADS Google scholar
[7]
J. S. Miao, W. D. Hu, Y. L. Jing, W. J. Luo, L. Liao, A. L. Pan, S. W. Wu, J. X. Cheng, X. S. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)
CrossRef ADS Google scholar
[8]
S. P. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett. 107(9), 096801 (2011)
CrossRef ADS Google scholar
[9]
S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, The surface plasmon modes of self-assembled gold nanocrystals, Nat. Commun. 3, 1275 (2012)
CrossRef ADS Google scholar
[10]
L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)
CrossRef ADS Google scholar
[11]
R. A. Alvarez-Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó-Argibay, N. Pazos-Pérez, L. Vigderman, E. R. Zubarev, N. A. Kotov, and L. M. Liz-Marzan, Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions, Proc. Natl. Acad. Sci. USA 108(20), 8157 (2011)
CrossRef ADS Google scholar
[12]
E. C. Le Ru and P. G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)
CrossRef ADS Google scholar
[13]
G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, Surface-enhanced raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications, Appl. Spectrosc. 65(8), 825 (2011)
CrossRef ADS Google scholar
[14]
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef ADS Google scholar
[15]
Z. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
CrossRef ADS Google scholar
[16]
Y. Zhang, J. Qian, D. Wang, Y. L. Wang, and S. L. He, Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy, Angew. Chem. Int. Ed. 52(4), 1148 (2013)
CrossRef ADS Google scholar
[17]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy, Nano Lett. 10(12), 4952 (2010)
CrossRef ADS Google scholar
[18]
K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, Raman enhancement factor of a single tunable nanoplasmonic resonator, J. Phys. Chem. B 110(9), 3964 (2006)
CrossRef ADS Google scholar
[19]
L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)
CrossRef ADS Google scholar
[20]
S. Wang, D. F. Pile, C. Sun, and X. Zhang, Nanopin plasmonic resonator array and its optical properties, Nano Lett. 7(4), 1076 (2007)
CrossRef ADS Google scholar
[21]
Y. Z. He, J. X. Fu, and Y. P. Zhao, Oblique angle deposition and its applications in plasmonics, Front. Phys. 9(1), 47 (2014)
CrossRef ADS Google scholar
[22]
F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
CrossRef ADS Google scholar
[23]
W. Y. Rao, Q. Li, Y. Z. Wang, T. Li, and L. J. Wu, Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods, ACS Nano 9(3), 2783 (2015)
CrossRef ADS Google scholar
[24]
S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods, ACS Nano 8(5), 4440 (2014)
CrossRef ADS Google scholar
[25]
Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 17 (2014)
CrossRef ADS Google scholar
[26]
B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15(1-2), 16 (2012)
CrossRef ADS Google scholar
[27]
K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, and K. Uosaki, Plasmonic enhancement of Raman scattering on non-SERS-active platinum substrates, J. Phys. Chem. C 113(27), 11816 (2009)
CrossRef ADS Google scholar
[28]
J. F. Li, Z. L. Yang, B. Ren, G. K. Liu, P. P. Fang, Y. X. Jiang, D. Y. Wu, and Z. Q. Tian, Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces, Langmuir 22(25), 10372 (2006)
CrossRef ADS Google scholar
[29]
Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy, Chem. Commun. (34), 3514 (2007)
CrossRef ADS Google scholar
[30]
L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)
CrossRef ADS Google scholar
[31]
N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13(18), 1389 (2001)
CrossRef ADS Google scholar
[32]
D. W. Lynch and W. R. Hunter, in: Handbook of Optical Constants of Solids, edited by E. D. Palik, New York: Academic Press, 1985, pp 350–356
[33]
M. Grzelczak, J. Pérez-Juste, B. Rodríguez-González, and L. M. Liz-Marzán, Influence of silver ions on the growth mode of platinum on gold nanorods, J. Mater. Chem. 16(40), 3946 (2006)
CrossRef ADS Google scholar
[34]
M. Grzelczak, J. Perez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, Optical properties of platinum-coated gold nanorods, J. Phys. Chem. C 111(17), 6183 (2007)
CrossRef ADS Google scholar
[35]
L. L. Feng, X. C. Wu, L. R. Ren, Y. J. Xiang, W. W. He, K. Zhang, W. Y. Zhou, and S. S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth, Chemistry 14(31), 9764 (2008)
CrossRef ADS Google scholar
[36]
Z. L. Wang, M. Mohamed, S. Link, and M. El-Sayed, Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci. 440(1-2), L809 (1999)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(636 KB)

Accesses

Citations

Detail

Sections
Recommended

/