Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2

Qing Jiang, Dao-Xin Yao

PDF(353 KB)
PDF(353 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117401. DOI: 10.1007/s11467-015-0527-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2

Author information +
History +

Abstract

The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFe1.5Se2 are investigated. A rhombus-type Fe vacancy order with stripetype antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mott insulator — the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the dxz and dyz orbitals become different simultaneously when U>Uc (∼3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.

Keywords

iron-based superconductor / two-orbital model / stripe AFM phase / rhombus Fe vacancy order / orbital ordering

Cite this article

Download citation ▾
Qing Jiang, Dao-Xin Yao. Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2. Front. Phys., 2016, 11(2): 117401 https://doi.org/10.1007/s11467-015-0527-4

References

[1]
J. G. Guo, S. F. Jin, G. Wang, S. C. Wang, K. X. Zhu, T. T. Zhou, M. He, and X. L. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B 82(18), 180520 (2010)
CrossRef ADS Google scholar
[2]
A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc= 27 K, J. Phys.: Condens. Matter 23(5), 052203 (2011)
CrossRef ADS Google scholar
[3]
H. D. Wang, C. H. Dong, Z. J. Li, Q. H. Mao, S. S. Zhu, C. M. Feng, H. Q. Yuan, and M. H. Fang, Superconductivity at 32 K and anisotropy in Tl0.58Rb0.42Fe1.72Se2 crystals, Europhys. Lett. 93(4), 47004 (2011)
CrossRef ADS Google scholar
[4]
A. F. Wang, J. J. Ying, Y. J. Yan, R. H. Liu, X. G. Luo, Z. Y. Li, X. F. Wang, M. Zhang, G. J. Ye, P. Cheng, Z. J. Xiang, and X. H. Chen, Superconductivity at 32 K in single-crystalline RbxFe2-ySe2, Phys. Rev. B 83, 060512(R) (2011)
[5]
E. Dagotto, Colloquium: The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)
CrossRef ADS Google scholar
[6]
M. Guidry and Y. Sun, Superconductivity and superfluidity as universal emergent phenomena, Front. Phys. 10(4), 107404 (2015)
CrossRef ADS Google scholar
[7]
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
CrossRef ADS Google scholar
[8]
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)
CrossRef ADS Google scholar
[9]
X. P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H. D. Wang, C. H. Dong, M. H. Fang, and H. Ding, Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES, Europhys. Lett. 93(5), 57001 (2011)
CrossRef ADS Google scholar
[10]
F. J. Ma and Z. Y. Lu, Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal, Phys. Rev. B 78(3), 033111 (2008)
CrossRef ADS Google scholar
[11]
J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Competing orders and spin-density-wave instability in La(O1-xFx)FeAs, Europhys. Lett. 83(2), 27006 (2008)
CrossRef ADS Google scholar
[12]
F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, J. Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, J. P. Hu, and D. L. Feng, Electronic identification of the parental phases and mesoscopic phase separation of KxFe2-ySe2 superconductors, Phys. Rev. X 1(2), 021020 (2011)
CrossRef ADS Google scholar
[13]
A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N.L. Saini, and A. Bianconi, Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused X-ray diffraction, Phys. Rev. B 84, 060511(R) (2011)
[14]
D. X. Mou, L. Zhao, and X. J. Zhou, Structural, magnetic and electronic properties of the iron-chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors, Front. Phys. 6(4), 410 (2011)
CrossRef ADS Google scholar
[15]
W. Bao, Q. Z. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, and Y. M. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor, Chin. Phys. Lett. 28(8), 086104 (2011)
CrossRef ADS Google scholar
[16]
W. Bao, G. N. Li, Q. Z. Huang, G. F. Chen, J. B. He, D. M. Wang, M. A. Green, Y. M. Qiu, J. L. Luo, and M. M. Wu, Superconductivity tuned by the iron vacancy order in KxF2-ySe2, Chin. Phys. Lett. 30(2), 027402 (2013)
CrossRef ADS Google scholar
[17]
J. Zhao, H. Cao, E. Bourret-Courchesne, D. H. Lee, and R. J. Birgeneau, Neutron-diffraction measurements of an antiferromagnetic semiconducting phase in the vicinity of the high-temperature superconducting state of KxFe2-ySe2, Phys. Rev. Lett. 109(26), 267003 (2012)
CrossRef ADS Google scholar
[18]
M. Wang, W. Tian, P. Valdivia, S. X. Chi, E. Bourret-Courchesne, P. C. Dai, and R. J. Birgeneau, Two spatially separated phases in semiconducting Rb0.8Fe1.5S2, Phys. Rev. B 90(12), 125148 (2014)
CrossRef ADS Google scholar
[19]
J. Zhao, Y. Shen, R. J. Birgeneau, M. Gao, Z. Y. Lu, D. H. Lee, X. Z. Lu, H. J. Xiang, D. L. Abernathy, and Y. Zhao, Neutron scattering measurements of spatially anisotropic magnetic exchange interactions in semiconducting K0.85Fe1.54Se2 (TN= 280 K), Phys. Rev. Lett. 112(17), 177002 (2014)
CrossRef ADS Google scholar
[20]
M. Wang, P. Valdivia, J. X. Chen, W. L. Zhang, R. A. Ewings, T. G. Perring, Y. Zhao, L. W. Harriger, J. W. Lynn, E. Bourret-Courchesne, D. H. Lee, D. X. Yao, and R. J. Birgeneau, Spin waves and spatially anisotropic exchange interactions in the S= 2 stripe antiferromagnet Rb0.8Fe1.5S2, Phys. Rev. B 92, 041109(R) (2015)
[21]
L. Boeri, O. V. Dolgov, and A. A. Golubov, Is LaFeAsO1-xFx an electron-phonon superconductor? Phys. Rev. Lett. 101(2), 026403 (2008)
CrossRef ADS Google scholar
[22]
Y. Liang, X. X. Wu, W. F. Tsai, and J. P. Hu, Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation, Front. Phys. 9(2), 194 (2014)
CrossRef ADS Google scholar
[23]
S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang, A minimal two-band model for the superconducting Fe-pnictides, Phys. Rev. B 77, 220503(R) (2008)
[24]
M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Model for the magnetic order and pairing channels in Fe pnictide superconductors, Phys. Rev. Lett. 101(23), 237004 (2008)
CrossRef ADS Google scholar
[25]
Q. Jiang, Y. T. Kang, and D. X. Yao, Spin, charge, and orbital orderings in iron-based superconductors, Chin. Phys. B 22(8), 087402 (2013)
CrossRef ADS Google scholar
[26]
Q. L. Luo, D. X. Yao, A. Moreo, and E. Dagotto, Charge stripes in the two-orbital Hubbard model for iron pnictides, Phys. Rev. B 83(17), 174513 (2011)
CrossRef ADS Google scholar
[27]
M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat Commun. 2, 580 (2011)
CrossRef ADS Google scholar
[28]
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
CrossRef ADS Google scholar
[29]
R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides, Phys. Rev. B 79(10), 104510 (2009)
CrossRef ADS Google scholar
[30]
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic structures and magnetic order of ordered-Fe-vacancy ternary iron selenides TlFe1.5Se2 and AFe1.5Se2 (A=K, Rb, or Cs), Phys. Rev. Lett. 106(8), 087005 (2011)
CrossRef ADS Google scholar
[31]
C. C. Lee, W. G. Yin, and W. Ku, Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors, Phys. Rev. Lett. 103(26), 267001 (2009)
CrossRef ADS Google scholar
[32]
W. C. Lv, W. C. Lee, and P. Phillips, Vacancy-driven orbital and magnetic order in (K,Tl,Cs)yFe2-xSe2, Phys. Rev. B 84(15), 155107 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(353 KB)

Accesses

Citations

Detail

Sections
Recommended

/