Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2
Qing Jiang, Dao-Xin Yao
Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2
The two-orbital Hubbard model is studied numerically by using the Hartree-Fock approximation in both real space and momentum space, and the ground-state properties of the alkali metal iron selenide semiconducting KFe1.5Se2 are investigated. A rhombus-type Fe vacancy order with stripetype antiferromagnetic (AFM) order is found, as was observed in neutron scattering experiments [J. Zhao, et al., Phys. Rev. Lett. 109, 267003 (2012)]. Hopping parameters are obtained by fitting the experimentally observed stripe AFM phase in real space. These hopping parameters are then used to study the ground-state properties of the semiconductor in momentum space. It is found to be a strongly correlated system with a large on-site Coulomb repulsion U, similar to the AFM Mott insulator — the parent compound of copper oxide superconductors. We also find that the electronic occupation numbers and magnetizations in the dxz and dyz orbitals become different simultaneously when U>Uc (∼3.4 eV), indicating orbital ordering. These results imply that the rotational symmetry between the two orbitals is broken by orbital ordering and thus drives the strong anisotropy of the magnetic coupling that has been observed by experiments and that the stripe-type AFM order in this compound may be caused by orbital ordering together with the observed large anisotropy.
iron-based superconductor / two-orbital model / stripe AFM phase / rhombus Fe vacancy order / orbital ordering
[1] |
J. G. Guo, S. F. Jin, G. Wang, S. C. Wang, K. X. Zhu, T. T. Zhou, M. He, and X. L. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B 82(18), 180520 (2010)
CrossRef
ADS
Google scholar
|
[2] |
A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, and K. Conder, Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc= 27 K, J. Phys.: Condens. Matter 23(5), 052203 (2011)
CrossRef
ADS
Google scholar
|
[3] |
H. D. Wang, C. H. Dong, Z. J. Li, Q. H. Mao, S. S. Zhu, C. M. Feng, H. Q. Yuan, and M. H. Fang, Superconductivity at 32 K and anisotropy in Tl0.58Rb0.42Fe1.72Se2 crystals, Europhys. Lett. 93(4), 47004 (2011)
CrossRef
ADS
Google scholar
|
[4] |
A. F. Wang, J. J. Ying, Y. J. Yan, R. H. Liu, X. G. Luo, Z. Y. Li, X. F. Wang, M. Zhang, G. J. Ye, P. Cheng, Z. J. Xiang, and X. H. Chen, Superconductivity at 32 K in single-crystalline RbxFe2-ySe2, Phys. Rev. B 83, 060512(R) (2011)
|
[5] |
E. Dagotto, Colloquium: The unexpected properties of alkali metal iron selenide superconductors, Rev. Mod. Phys. 85(2), 849 (2013)
CrossRef
ADS
Google scholar
|
[6] |
M. Guidry and Y. Sun, Superconductivity and superfluidity as universal emergent phenomena, Front. Phys. 10(4), 107404 (2015)
CrossRef
ADS
Google scholar
|
[7] |
Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy, Nat. Mater. 10(4), 273 (2011)
CrossRef
ADS
Google scholar
|
[8] |
T. Qian, X. P. Wang, W. C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J. G. Guo, X. L. Chen, and H. Ding, Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 106(18), 187001 (2011)
CrossRef
ADS
Google scholar
|
[9] |
X. P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H. D. Wang, C. H. Dong, M. H. Fang, and H. Ding, Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES, Europhys. Lett. 93(5), 57001 (2011)
CrossRef
ADS
Google scholar
|
[10] |
F. J. Ma and Z. Y. Lu, Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal, Phys. Rev. B 78(3), 033111 (2008)
CrossRef
ADS
Google scholar
|
[11] |
J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Competing orders and spin-density-wave instability in La(O1-xFx)FeAs, Europhys. Lett. 83(2), 27006 (2008)
CrossRef
ADS
Google scholar
|
[12] |
F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, J. Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, J. P. Hu, and D. L. Feng, Electronic identification of the parental phases and mesoscopic phase separation of KxFe2-ySe2 superconductors, Phys. Rev. X 1(2), 021020 (2011)
CrossRef
ADS
Google scholar
|
[13] |
A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N.L. Saini, and A. Bianconi, Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused X-ray diffraction, Phys. Rev. B 84, 060511(R) (2011)
|
[14] |
D. X. Mou, L. Zhao, and X. J. Zhou, Structural, magnetic and electronic properties of the iron-chalcogenide AxFe2-ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors, Front. Phys. 6(4), 410 (2011)
CrossRef
ADS
Google scholar
|
[15] |
W. Bao, Q. Z. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, and Y. M. Qiu, A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor, Chin. Phys. Lett. 28(8), 086104 (2011)
CrossRef
ADS
Google scholar
|
[16] |
W. Bao, G. N. Li, Q. Z. Huang, G. F. Chen, J. B. He, D. M. Wang, M. A. Green, Y. M. Qiu, J. L. Luo, and M. M. Wu, Superconductivity tuned by the iron vacancy order in KxF2-ySe2, Chin. Phys. Lett. 30(2), 027402 (2013)
CrossRef
ADS
Google scholar
|
[17] |
J. Zhao, H. Cao, E. Bourret-Courchesne, D. H. Lee, and R. J. Birgeneau, Neutron-diffraction measurements of an antiferromagnetic semiconducting phase in the vicinity of the high-temperature superconducting state of KxFe2-ySe2, Phys. Rev. Lett. 109(26), 267003 (2012)
CrossRef
ADS
Google scholar
|
[18] |
M. Wang, W. Tian, P. Valdivia, S. X. Chi, E. Bourret-Courchesne, P. C. Dai, and R. J. Birgeneau, Two spatially separated phases in semiconducting Rb0.8Fe1.5S2, Phys. Rev. B 90(12), 125148 (2014)
CrossRef
ADS
Google scholar
|
[19] |
J. Zhao, Y. Shen, R. J. Birgeneau, M. Gao, Z. Y. Lu, D. H. Lee, X. Z. Lu, H. J. Xiang, D. L. Abernathy, and Y. Zhao, Neutron scattering measurements of spatially anisotropic magnetic exchange interactions in semiconducting K0.85Fe1.54Se2 (TN= 280 K), Phys. Rev. Lett. 112(17), 177002 (2014)
CrossRef
ADS
Google scholar
|
[20] |
M. Wang, P. Valdivia, J. X. Chen, W. L. Zhang, R. A. Ewings, T. G. Perring, Y. Zhao, L. W. Harriger, J. W. Lynn, E. Bourret-Courchesne, D. H. Lee, D. X. Yao, and R. J. Birgeneau, Spin waves and spatially anisotropic exchange interactions in the S= 2 stripe antiferromagnet Rb0.8Fe1.5S2, Phys. Rev. B 92, 041109(R) (2015)
|
[21] |
L. Boeri, O. V. Dolgov, and A. A. Golubov, Is LaFeAsO1-xFx an electron-phonon superconductor? Phys. Rev. Lett. 101(2), 026403 (2008)
CrossRef
ADS
Google scholar
|
[22] |
Y. Liang, X. X. Wu, W. F. Tsai, and J. P. Hu, Pairing symmetry in layered BiS2 compounds driven by electron-electron correlation, Front. Phys. 9(2), 194 (2014)
CrossRef
ADS
Google scholar
|
[23] |
S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang, A minimal two-band model for the superconducting Fe-pnictides, Phys. Rev. B 77, 220503(R) (2008)
|
[24] |
M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Model for the magnetic order and pairing channels in Fe pnictide superconductors, Phys. Rev. Lett. 101(23), 237004 (2008)
CrossRef
ADS
Google scholar
|
[25] |
Q. Jiang, Y. T. Kang, and D. X. Yao, Spin, charge, and orbital orderings in iron-based superconductors, Chin. Phys. B 22(8), 087402 (2013)
CrossRef
ADS
Google scholar
|
[26] |
Q. L. Luo, D. X. Yao, A. Moreo, and E. Dagotto, Charge stripes in the two-orbital Hubbard model for iron pnictides, Phys. Rev. B 83(17), 174513 (2011)
CrossRef
ADS
Google scholar
|
[27] |
M. Wang, C. Fang, D. X. Yao, G. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. Hu, and P. Dai, Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2, Nat Commun. 2, 580 (2011)
CrossRef
ADS
Google scholar
|
[28] |
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 465 (2014)
CrossRef
ADS
Google scholar
|
[29] |
R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides, Phys. Rev. B 79(10), 104510 (2009)
CrossRef
ADS
Google scholar
|
[30] |
X. W. Yan, M. Gao, Z. Y. Lu, and T. Xiang, Electronic structures and magnetic order of ordered-Fe-vacancy ternary iron selenides TlFe1.5Se2 and AFe1.5Se2 (A=K, Rb, or Cs), Phys. Rev. Lett. 106(8), 087005 (2011)
CrossRef
ADS
Google scholar
|
[31] |
C. C. Lee, W. G. Yin, and W. Ku, Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors, Phys. Rev. Lett. 103(26), 267001 (2009)
CrossRef
ADS
Google scholar
|
[32] |
W. C. Lv, W. C. Lee, and P. Phillips, Vacancy-driven orbital and magnetic order in (K,Tl,Cs)yFe2-xSe2, Phys. Rev. B 84(15), 155107 (2011)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |