A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

P. James Schuck, Wei Bao, Nicholas J. Borys

Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117804.

PDF(588 KB)
Front. Phys. All Journals
PDF(588 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117804. DOI: 10.1007/s11467-015-0526-5
REVIEW ARTICLE

A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

Author information +
History +

Abstract

By enabling the probing of light–matter interactions at the functionally relevant length scales of most materials, near-field optical imaging and spectroscopy accesses information that is unobtainable with other methods. The advent of apertureless techniques, which exploit the ultralocalized and enhanced near-fields created by sharp metallic tips or plasmonic nanoparticles, has resulted in rapid adoption of near-field approaches for studying novel materials and phenomena, with spatial resolution approaching sub-molecular levels. However, these approaches are generally limited by the dominant out-of-plane polarization response of apertureless tips, restricting the exploration and discovery of many material properties. This has led to recent design and fabrication breakthroughs in near-field tips engineered specifically for enhancing in-plane interactions with near-field light components. This mini-review provides a perspective on recent progress and emerging directions aimed at utilizing and controlling in-plane optical polarization, highlighting key application spaces where in-plane near-field tip responses have enabled recent advancements in the understanding and development of new nanostructured materials and devices.

Keywords

near-field optical microscopy / nano-optics / TERS / plasmonics / optical antenna / 2D materials

Cite this article

Download citation ▾
P. James Schuck, Wei Bao, Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys., 2016, 11(2): 117804 https://doi.org/10.1007/s11467-015-0526-5
This is a preview of subscription content, contact us for subscripton.

References

[1]
L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006
CrossRef ADS Google scholar
[2]
S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nano-imaging and superlensing, Nat. Photonics 3(7), 388 (2009)
CrossRef ADS Google scholar
[3]
M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications, New York: Wiley, 1996
[4]
J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids, Adv. Phys. 61(6), 745 (2012)
CrossRef ADS Google scholar
[5]
M. Fleischer, Near-field scanning optical microscopy nanoprobes, Nanotechnology Reviews 1(4), 313 (2012)
CrossRef ADS Google scholar
[6]
P. J. Schuck, A. Weber-Bargioni, P. D. Ashby, D. F. Ogletree, A. Schwartzberg, and S. Cabrini, Life beyond diffraction: Opening new routes to materials characterization with next-generation optical near-field approaches, Adv. Funct. Mater. 23(20), 2539 (2013)
CrossRef ADS Google scholar
[7]
N. Mauser and A. Hartschuh, Tip-enhanced near-field optical microscopy, Chem. Soc. Rev. 43(4), 1248 (2014)
CrossRef ADS Google scholar
[8]
A. V. Zayats and D. Richards(Eds.), Nano-Optics and Near-Field Optical Microscopy, Artech House, 2008
[9]
R. C. Dunn, Near-field scanning optical microscopy, Chem. Rev. 99(10), 2891 (1999)
CrossRef ADS Google scholar
[10]
M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)
CrossRef ADS Google scholar
[11]
A. Hartschuh, Tip-enhanced near-field optical microscopy, Angew. Chem. Int. Ed. 47(43), 8178 (2008)
CrossRef ADS Google scholar
[12]
B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. H. Zhang, Tip-enhanced Raman spectroscopy – Its status, challenges and future directions, Chem. Phys. Lett. 472(1-3), 1 (2009)
CrossRef ADS Google scholar
[13]
B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, in: Annual Review of Physical Chemistry, M. A. Johnson and T. J. Martinez (Eds.), 2012, pp 379–399
[14]
K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Definition and measurement of the local density of electromagnetic states close to an interface, Phys. Rev. B 68(24), 245405 (2003)
CrossRef ADS Google scholar
[15]
R. Beams, D. Smith, T. W. Johnson, S. H. Oh, L. Novotny, and A. N. Vamivakas, Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center, Nano Lett. 13(8), 3807 (2013)
CrossRef ADS Google scholar
[16]
R. Carminati, A. Caze, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde, Electromagnetic density of states in complex plasmonic systems, Surf. Sci. Rep. 70(1), 1 (2015)
CrossRef ADS Google scholar
[17]
N. Rotenberg and L. Kuipers, Mapping nanoscale light fields, Nat. Photonics 8(12), 919 (2014)
CrossRef ADS Google scholar
[18]
M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps, Nano Lett. 10(9), 3524 (2010)
CrossRef ADS Google scholar
[19]
K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, Vector field microscopic imaging of light, Nat. Photonics 1(1), 53 (2007)
CrossRef ADS Google scholar
[20]
H. Gersen, L. Novotny, L. Kuipers, and N. F. van Hulst, On the concept of imaging nanoscale vector fields, Nat. Photonics 1(5), 242 (2007)
CrossRef ADS Google scholar
[21]
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Cambridge University Press, 1999
CrossRef ADS Google scholar
[22]
T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Degree of polarization for optical near fields, Phys. Rev. E 66(1), 016615 (2002)
CrossRef ADS Google scholar
[23]
S. Patanè, E. Cefali, S. Spadaro, R. Gardelli, M. Albani, and M. Allegrini, Polarization-maintaining near-field optical probes, Journal of Microscopy 229(2), 377 (2008)
CrossRef ADS Google scholar
[24]
M. J. Fasolka, L. S. Goldner, J. Hwang, A. M. Urbas, P. Derege, T. Swager, and E. L. Thomas, Measuring local optical properties: Near-field polarimetry of photonic block copolymer morphology, Phys. Rev. Lett. 90(1), 016107, 1 (2003)
[25]
P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)
CrossRef ADS Google scholar
[26]
E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)
CrossRef ADS Google scholar
[27]
H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, Resolution and enhancement in nanoantenna-based fluorescence microscopy, Nano Lett. 9(12), 4007 (2009)
CrossRef ADS Google scholar
[28]
S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)
CrossRef ADS Google scholar
[29]
P. Bharadwaj, P. Anger, and L. Novotny, Nanoplasmonic enhancement of single-molecule fluorescence, Nanotechnology 18(4), 044017 (2007)
CrossRef ADS Google scholar
[30]
J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys. Rev. Lett. 95(1), 017402 (2005)
CrossRef ADS Google scholar
[31]
J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, Tip-enhanced fluorescence microscopy at 10 nanometer resolution, Phys. Rev. Lett. 93(18), 180801 (2004)
CrossRef ADS Google scholar
[32]
A. Ghimire, E. Shafran, and J. M. Gerton, Using a sharp metal tip to control the polarization and direction of emission from a quantum dot, Sci. Rep. 4, 6456 (2014)
CrossRef ADS Google scholar
[33]
T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence, Nano Lett. 7(1), 28 (2007)
CrossRef ADS Google scholar
[34]
J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling, Appl. Phys. Lett. 72(24), 3115 (1998)
CrossRef ADS Google scholar
[35]
R. Eckel, V. Walhorn, C. Pelargus, J. Martini, J. Enderlein, T. Nann, D. Anselmetti, and R. Ros, Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips, Small 3(1), 44 (2007)
CrossRef ADS Google scholar
[36]
E. Yoskovitz, D. Oron, I. Shweky, and U. Banin, Apertureless near-field distance-dependent lifetime imaging and spectroscopy of semiconductor nanocrystals, J. Phys. Chem. C 112(42), 16306 (2008)
CrossRef ADS Google scholar
[37]
V. V. Protasenko, M. Kuno, A. Gallagher, and D. J. Nesbitt, Fluorescence of single ZnS overcoated CdSe quantum dots studied by apertureless near-field scanning optical microscopy, Opt. Commun. 210(1-2), 11 (2002)
CrossRef ADS Google scholar
[38]
M. I. Stockman, D. J. Bergman, and T. Kobayashi, Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69(5), 054202 (2004)
CrossRef ADS Google scholar
[39]
S. Berweger, C. C. Neacsu, Y. B. Mao, H. J. Zhou, S. S. Wong, and M. B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy, Nat. Nanotechnol. 4(8), 496 (2009)
CrossRef ADS Google scholar
[40]
S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Light on the tip of a needle: Plasmonic nanofocusing for spectroscopy on the nanoscale, J. Phys. Chem. Lett. 3(7), 945 (2012)
CrossRef ADS Google scholar
[41]
E. J. Sánchez, L. Novotny, and X. S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 82(20), 4014 (1999)
CrossRef ADS Google scholar
[42]
T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Phys. Rev. Lett. 92(22), 220801 (2004)
CrossRef ADS Google scholar
[43]
S. Palomba and L. Novotny, Near-field imaging with a localized nonlinear light source, Nano Lett. 9(11), 3801 (2009)
CrossRef ADS Google scholar
[44]
A. V. Zayats and V. Sandoghdar, Apertureless scanning near-field second-harmonic microscopy, Opt. Commun. 178(1-3), 245 (2000)
CrossRef ADS Google scholar
[45]
A. V. Zayats and V. Sandoghdar, Apertureless near-field optical microscopy via local second-harmonic generation, Journal of Microscopy 202(1), 94 (2001)
CrossRef ADS Google scholar
[46]
A.V. Zayats and I. I. Smolyaninov, Near-field second-harmonic generation: One contribution of 13 to a Theme “Nano-optics and near-field microscopy”, Royal Society of London Transactions Series A, 362(1817), 843 (2004)
[47]
C. C. Neacsu, B. B. van Aken, M. Fiebig, and M. B. Raschke, Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3, Phys. Rev. B 79(10), 100107 (2009)
CrossRef ADS Google scholar
[48]
C. Neacsu, G. Steudle, and M. Raschke, Plasmonic light scattering from nanoscopic metal tips, Appl. Phys. B 80(3), 295 (2005)
CrossRef ADS Google scholar
[49]
K. A. Meyer, K. C. Ng, Z. Gu, Z. Pan, W. B. Whitten, and R. W. Shaw, Combined apertureless near-field optical second-harmonic generation/atomic force microscopy imaging and nanoscale limit of detection, Appl. Spectrosc. 64(1), 1 (2010)
CrossRef ADS Google scholar
[50]
S. I. Bozhevolnyi, K. Pedersen, T. Skettrup, X. S. Zhang, and M. Belmonte, Far- and near-field second-harmonic imaging of ferroelectric domain walls, Opt. Commun. 152(4-6), 221 (1998)
CrossRef ADS Google scholar
[51]
L. Mahieu-Williame, S. Gresillon, M. Cuniot-Ponsard, and C. Boccara, Second harmonic generation in the near field and far field: A sensitive tool to probe crystalline homogeneity, J. Appl. Phys. 101(8), 083111 (2007)
CrossRef ADS Google scholar
[52]
E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60(20), 2484 (1992)
CrossRef ADS Google scholar
[53]
E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257(5067), 189 (1992)
CrossRef ADS Google scholar
[54]
T. J. Silva and S. Schultz, A scanning near-field optical microscope for the imaging of magnetic domains in reflection, Rev. Sci. Instrum. 67(3), 715 (1996)
CrossRef ADS Google scholar
[55]
F. Matthes, H. Bruckl, and G. Reiss, Near-field magneto-optical microscopy in collection and illumination mode, Ultramicroscopy 71(1-4), 243 (1998)
CrossRef ADS Google scholar
[56]
P. Bertrand, L. Conin, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, Imaging of magnetic domains with scanning tunneling optical microscopy, J. Appl. Phys. 83(11), 6834 (1998)
CrossRef ADS Google scholar
[57]
C. Durkan, I. V. Shvets, and J. C. Lodder, Observation of magnetic domains using a reflection-mode scanning near-field optical microscope, Appl. Phys. Lett. 70(10), 1323 (1997)
CrossRef ADS Google scholar
[58]
S. Takahashi, W. Dickson, R. Pollard, and A. Zayats, Near-field magneto-optical analysis in reflection mode SNOM, Ultramicroscopy 100(3-4), 443 (2004)
CrossRef ADS Google scholar
[59]
P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G. Guntherodt, Quantitative determination of the local Kerr rotation by scanning near-field magneto-optic microscopy, Appl. Phys. Lett. 72(22), 2803 (1998)
CrossRef ADS Google scholar
[60]
S. Grésillon, H. Cory, J. C. Rivoal, and A. C. Boccara, Transmission-mode apertureless near-field microscope: Optical and magneto-optical studies, J. Opt. A 1(2), 178 (1999)
CrossRef ADS Google scholar
[61]
J. N. Walford, J. A. Porto, R. Carminati, and J. J. Greffet, Theory of near-field magnetooptical imaging, J. Opt. Soc. Am. A 19(3), 572 (2002)
CrossRef ADS Google scholar
[62]
P. Fumagalli, Scanning near-field magneto-optic microscopy, in: Modern Techniques for Characterizing Magnetic Materials, edited by Y. Zhu, 2005, Dordrecht: Springer, pp 455–515
[63]
S. Sugano and N. Kojima(Eds.), Magneto-Optics (Springer Series in Solid-State Sciences), Berlin: Springer, 2000
[64]
W. Dickson, S. Takahashi, R. Pollard, R. Atkinson, and A. V. Zayats, Near-field imaging of ultrathin magnetic films with in-plane magnetization, Journal of Microscopy 209(3), 194 (2003)
CrossRef ADS Google scholar
[65]
A. Kapitulnik, J. S. Dodge, and M. M. Fejer, High-resolution magneto-optic measurements with a Sagnac interferometer, J. Appl. Phys. 75(10), 6872 (1994)
CrossRef ADS Google scholar
[66]
B. L. Petersen, A. Bauer, G. Meyer, T. Crecelius, and G. Kaindl, Kerr-rotation imaging in scanning near-field optical microscopy using a modified Sagnac interferometer, Appl. Phys. Lett. 73(4), 538 (1998)
CrossRef ADS Google scholar
[67]
I. I. Smolyaninov, A. V. Zayats, and C. C. Davis, Near-field second-harmonic imaging of ferromagnetic and ferroelectric materials, Opt. Lett. 22(21), 1592 (1997)
CrossRef ADS Google scholar
[68]
D. Wegner, U. Conrad, J. Gudde, G. Meyer, T. Crecelius, and A. Bauer, In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy, J. Appl. Phys. 88(4), 2166 (2000)
CrossRef ADS Google scholar
[69]
W. Dickson, S. Takahashi, C. M. I. Boronat, R. M. Bowman, J. M. Gregg, and A. V. Zayats, Near-field second-harmonic imaging of thin ferroelectric films, Phys. Rev. B 72(9), 094110 (2005)
CrossRef ADS Google scholar
[70]
J. Stadler, T. Schmid, and R. Zenobi, Developments in and practical guidelines for tip-enhanced Raman spectroscopy, Nanoscale 4(6), 1856 (2012)
CrossRef ADS Google scholar
[71]
T. Mino, Y. Saito, and P. Verma, Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole, ACS Nano 8(10), 10187 (2014)
CrossRef ADS Google scholar
[72]
Y. Saito and P. Verma, Polarization-controlled Raman microscopy and nanoscopy, J. Phys. Chem. Lett. 3(10), 1295 (2012)
CrossRef ADS Google scholar
[73]
M. D. Sonntag, E. A. Pozzi, N. Jiang, M. C. Hersam, and R. P. Van Duyne, Recent advances in tip-enhanced Raman spectroscopy, J. Phys. Chem. Lett. 5(18), 3125 (2014)
CrossRef ADS Google scholar
[74]
P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits, Laser Photonics Rev. 4(4), 548 (2010)
CrossRef ADS Google scholar
[75]
T. Mino, Y. Saito, H. Yoshida, S. Kawata, and P. Verma, Molecular orientation analysis of organic thin films by z-polarization Raman microscope, J. Raman Spectrosc. 43(12), 2029 (2012)
CrossRef ADS Google scholar
[76]
H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66(7-8), 163 (1944)
CrossRef ADS Google scholar
[77]
L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E 50(5), 4094 (1994)
CrossRef ADS Google scholar
[78]
R. D. Grober, T. Rutherford, and T. D. Harris, Modal approximation for the electromagnetic field of a near-field optical probe, Appl. Opt. 35(19), 3488 (1996)
CrossRef ADS Google scholar
[79]
Th. Huser, L. Novotny, Th. Lacoste, R. Eckert, and H. Heinzelmann, Observation and analysis of near-field optical diffraction, J. Opt. Soc. Am. A 16(1), 141 (1999)
CrossRef ADS Google scholar
[80]
T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, A single gold particle as a probe for apertureless scanning near-field optical microscopy, Journal of Microscopy-Oxford 202(1), 72 (2001)
CrossRef ADS Google scholar
[81]
M. I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93(13), 137404 (2004)
CrossRef ADS Google scholar
[82]
F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, Infrared-spectroscopic nanoimaging with a thermal source, Nat. Mater. 10(5), 352 (2011)
CrossRef ADS Google scholar
[83]
J. Stadler, T. Schmid, and R. Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy, Nano Lett. 10(11), 4514 (2010)
CrossRef ADS Google scholar
[84]
A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes, Nano Lett. 11(3), 1201 (2011)
CrossRef ADS Google scholar
[85]
P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. L. de la Chapelle, Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy, Nanotechnology 19(21), 215702 (2008)
CrossRef ADS Google scholar
[86]
R. Ossikovski, Q. Nguyen, and G. Picardi, Simple model for the polarization effects in tip-enhanced Raman spectroscopy, Phys. Rev. B 75(4), 045412 (2007)
CrossRef ADS Google scholar
[87]
T. Schmid, L. Opilik, C. Blum, and R. Zenobi, Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review, Angew. Chem. Int. Ed. 52(23), 5940 (2013)
CrossRef ADS Google scholar
[88]
T. Schmid, B. S. Yeo, G. Leong, J. Stadler, and R. Zenobi, Performing tip-enhanced Raman spectroscopy in liquids, J. Raman Spectrosc. 40(10), 1392 (2009)
CrossRef ADS Google scholar
[89]
A. Tarun, N. Hayazawa, and S. Kawata, Tip-enhanced Raman spectroscopy for nanoscale strain characterization, Anal. Bioanal. Chem. 394(7), 1775 (2009)
CrossRef ADS Google scholar
[90]
Y. Ogawa, T. Toizumi, F. Minami, and A. V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope, Phys. Rev. B 83(8), 081302 (2011)
CrossRef ADS Google scholar
[91]
S. Nakashima, T. Mitani, M. Ninomiya, and K. Matsumoto, Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands, J. Appl. Phys. 99(5), 053512 (2006)
CrossRef ADS Google scholar
[92]
R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett. 318(1-3), 131 (2000)
CrossRef ADS Google scholar
[93]
Y. D. Suh, R. M. Soeckle, V. Deckert, and R. Zenobi, Abstracts of Papers of the American Chemical Society 221, U91 (2001)
[94]
E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mandl, M. Strassburg, X. Kong, A. Trampert, C. M. Sotomayor Torres, A. Hoffmann, and J. Maultzsch, Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering, Nano Lett. 13(7), 3205 (2013)
CrossRef ADS Google scholar
[95]
S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, Adiabatic tip-plasmon focusing for nano-Raman spectroscopy, J. Phys. Chem. Lett. 1(24), 3427 (2010)
CrossRef ADS Google scholar
[96]
N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, and S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy, J. Raman Spectrosc. 38(6), 684 (2007)
CrossRef ADS Google scholar
[97]
C. Chen, N. Hayazawa, and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat. Commun. 5, 3312 (2014)
CrossRef ADS Google scholar
[98]
T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres, Nat. Photonics 3(8), 473 (2009)
CrossRef ADS Google scholar
[99]
R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
CrossRef ADS Google scholar
[100]
T. X. Huang, S. C. Huang, M. H. Li, Z. C. Zeng, X. Wang, and B. Ren, Tip-enhanced Raman spectroscopy: Tip-related issues, Anal. Bioanal. Chem. 407(27), 8177 (2015)
CrossRef ADS Google scholar
[101]
X. Zheng, C. Zong, M. Xu, X. Wang, and B. Ren, Raman imaging from microscopy to nanoscopy, and to macroscopy, Small 11(28), 3395 (2015)
CrossRef ADS Google scholar
[102]
R. Beams, L. G. Cancado, S. H. Oh, A. Jorio, and L. Novotny, Spatial coherence in near-field Raman scattering, Phys. Rev. Lett. 113(18), 186101 (2014)
CrossRef ADS Google scholar
[103]
F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons, Nat. Nanotechnol. 5(1), 67 (2010)
CrossRef ADS Google scholar
[104]
A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90(9), 095503 (2003)
CrossRef ADS Google scholar
[105]
M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution, Nano Lett. 6(7), 1307 (2006)
CrossRef ADS Google scholar
[106]
F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution, Nano Lett. 12(8), 3973 (2012)
CrossRef ADS Google scholar
[107]
A. C. Jones and M. B. Raschke, Thermal infrared near-field spectroscopy, Nano Lett. 12(3), 1475 (2012)
CrossRef ADS Google scholar
[108]
I. Amenabar, S. Poly, W. Nuansing, E. H. Hubrich, A. A. Govyadinov, F. Huth, R. Krutokhvostov, L. Zhang, M. Knez, J. Heberle, A. M. Bittner, and R. Hillenbrand, Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy, Nat. Commun. 4, 2890 (2013)
[109]
H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)
CrossRef ADS Google scholar
[110]
S. Mastel, A. A. Govyadinov, T. V. A. G. de Oliveira, I. Amenabar, and R. Hillenbrand, Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references, Appl. Phys. Lett. 106(2), 023113 (2015)
CrossRef ADS Google scholar
[111]
B. Pollard, E. A. Muller, K. Hinrichs, and M. B. Raschke, Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics, Nat. Commun. 5, 3587 (2014)
CrossRef ADS Google scholar
[112]
C. Höppener and L. Novotny, Exploiting the light–metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys. 45(02), 209 (2012)
CrossRef ADS Google scholar
[113]
B. D. Mangum, C. Mu, and J. M. Gerton, Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy, Opt. Express 16(9), 6183 (2008)
CrossRef ADS Google scholar
[114]
B. D. Mangum, E. Shafran, C. Mu, and J. M. Gerton, Three-dimensional mapping of near-field interactions via single-photon tomography, Nano Lett. 9(10), 3440 (2009)
CrossRef ADS Google scholar
[115]
L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, Extraordinary optical transmission brightens near-field fiber probe, Nano Lett. 11(2), 355 (2011)
CrossRef ADS Google scholar
[116]
M. A. Bopp, A. J. Meixner, G. Tarrach, I. Zschokke-Gränacher, and L. Novotny, Direct imaging single molecule diffusion in a solid polymer host, Chem. Phys. Lett. 263(6), 721 (1996)
CrossRef ADS Google scholar
[117]
T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids, ACS Nano 6(10), 9168 (2012)
CrossRef ADS Google scholar
[118]
C. C. Neacsu, G. A. Reider, and M. B. Raschke, Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures, Phys. Rev. B 71(20), 201402 (2005)
CrossRef ADS Google scholar
[119]
A. L. Demming, F. Festy, and D. Richards, Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering, J. Chem. Phys. 122(18), 184716 (2005)
CrossRef ADS Google scholar
[120]
D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics, J. Raman Spectrosc. 36(11), 1068 (2005)
CrossRef ADS Google scholar
[121]
J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst, Single molecule mapping of the optical field distribution of probes for near-field microscopy, Journal of Microscopy 194(2-3), 477 (1999)
CrossRef ADS Google scholar
[122]
B. Sick, B. Hecht, U. P. Wild, and L. Novotny, Probing confined fields with single molecules and vice versa, Journal of Microscopy 202(2), 365 (2001)
CrossRef ADS Google scholar
[123]
K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, Vector field mapping of local polarization using gold nanoparticle functionalized tips: Independence of the tip shape, Opt. Express 15(23), 14993 (2007)
CrossRef ADS Google scholar
[124]
C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.C. Weeber, and A. Dereux, Gain, detuning, and radiation patterns of nanoparticle optical antennas, Phys. Rev. B 78(15), 155407 (2008)
CrossRef ADS Google scholar
[125]
M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B 21(6), 1210 (2004)
CrossRef ADS Google scholar
[126]
T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics 2(4), 234 (2008)
CrossRef ADS Google scholar
[127]
S. Kuhn, G. Mori, M. Agio, and V. Sandoghdar, Modification of single molecule fluorescence close to a nanostructure: Radiation pattern, spontaneous emission and quenching, Mol. Phys. 106(7), 893 (2008)
CrossRef ADS Google scholar
[128]
M. Böhmler, N. Hartmann, C. Georgi, F. Hennrich, A. A. Green, M. C. Hersam, and A. Hartschuh, Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna, Opt. Express 18(16), 16443 (2010)
CrossRef ADS Google scholar
[129]
T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, Quantifying the magnetic nature of light emission, Nat. Commun. 3, 979 (2012)
CrossRef ADS Google scholar
[130]
A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna, Science 329(5994), 930 (2010)
CrossRef ADS Google scholar
[131]
M. Terrones, Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 33(1), 419 (2003)
CrossRef ADS Google scholar
[132]
M. S. Dresselhaus, A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Ann. Rev. Condens. Matter Phys. 1, 89 (2010)
CrossRef ADS Google scholar
[133]
X. Zhang, W. Zhang, L. Liu, and Z. X. Shen, Surface-enhanced Raman of Z-vibration mode in single-walled and multi-walled carbon nanotube, Chem. Phys. Lett. 372(3-4), 497 (2003)
CrossRef ADS Google scholar
[134]
M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409(2), 47 (2005)
CrossRef ADS Google scholar
[135]
M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007, J. Phys. Chem. C 111(48), 17887 (2007)
CrossRef ADS Google scholar
[136]
C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93(14), 147406 (2004)
CrossRef ADS Google scholar
[137]
C. Fantini, A. Jorio, M. Souza, R. Saito, G. G. Samsonidze, M. S. Dresselhaus, and M. A. Pimenta, Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes, Phys. Rev. B 72(8), 085446 (2005)
CrossRef ADS Google scholar
[138]
R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Finite-size effect on the Raman spectra of carbon nanotubes, Phys. Rev. B 59(3), 2388 (1999)
CrossRef ADS Google scholar
[139]
K. Sbai, A. Rahmani, H. Chadli, and J. L. Sauvajol, Finite-size effect on the Raman-active modes of double-walled carbon nanotubes, J. Phys.: Condens. Matter 20(1), 015204 (2008)
CrossRef ADS Google scholar
[140]
M. Mitra, and S. Gopalakrishnan, Vibrational characteristics of single-walled carbon-nanotube: Time and frequency domain analysis, J. Appl. Phys. 101(11), 114320 (2007)
CrossRef ADS Google scholar
[141]
G. Picardi, M. Chaigneau, and R. Ossikovski, High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode, Chem. Phys. Lett. 469(1-3), 161 (2009)
CrossRef ADS Google scholar
[142]
I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, H. H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A. M. Rao, L. Novotny, and A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat. Mater. 7(11), 878 (2008)
CrossRef ADS Google scholar
[143]
N. Anderson, A. Hartschuh, and L. Novotny, Chirality changes in carbon nanotubes studied with near-field raman spectroscopy, Nano Lett. 7(3), 577 (2007)
CrossRef ADS Google scholar
[144]
Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy, J. Raman Spectrosc. 40(10), 1434 (2009)
CrossRef ADS Google scholar
[145]
R. H. Rickman and P. R. Dunstan, Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy, J. Raman Spectrosc. 45(1), 15 (2014)
CrossRef ADS Google scholar
[146]
R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, Tip-enhanced Raman mapping of local strain in graphene, Nanotechnology 26(17), 175702 (2015)
CrossRef ADS Google scholar
[147]
A. Shiotari, T. Kumagai, and M. Wolf, Tip-enhanced Raman spectroscopy of graphene nanoribbons on Au(111), J. Phys. Chem. C 118(22), 11806 (2014)
CrossRef ADS Google scholar
[148]
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature 487(7405), 82 (2012)
CrossRef ADS Google scholar
[149]
J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons, Nature 487(7405), 77 (2012)
CrossRef ADS Google scholar
[150]
P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
CrossRef ADS Google scholar
[151]
A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Highly confined low-loss plasmons in graphene–boron nitride heterostructures, Nat. Mater. 14(4), 421 (2015)
CrossRef ADS Google scholar
[152]
Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photonics 9(8), 515 (2015)
CrossRef ADS Google scholar
[153]
M. Wagner, Z. Fei, A. S. McLeod, A. S. Rodin, W. Bao, E. G. Iwinski, Z. Zhao, M. Goldflam, M. Liu, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro Neto, C. N. Lau, S. Amarie, F. Keilmann, and D. N. Basov, Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy, Nano Lett. 14(2), 894 (2014)
CrossRef ADS Google scholar
[154]
D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
CrossRef ADS Google scholar
[155]
N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep. Prog. Phys. 75(3), 036501 (2012)
CrossRef ADS Google scholar
[156]
M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, Gold nanocone near-field scanning optical microscopy probes, ACS Nano 5(4), 2570 (2011)
CrossRef ADS Google scholar
[157]
P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)
CrossRef ADS Google scholar
[158]
P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold Bowtie nanoantennas, Phys. Rev. Lett. 94(1), 017402 (2005)
CrossRef ADS Google scholar
[159]
D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)
CrossRef ADS Google scholar
[160]
P. Biagioni, J. S. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys. 75(2), 024402 (2012)
CrossRef ADS Google scholar
[161]
J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy, Nanotechnology 18(12), 125506 (2007)
CrossRef ADS Google scholar
[162]
A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,Nanotechnology 21(6), 065306 (2010)
CrossRef ADS Google scholar
[163]
M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography, Nano Lett. 13(6), 2687 (2013)
CrossRef ADS Google scholar
[164]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[165]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[166]
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS Nano 6(1), 74 (2012)
CrossRef ADS Google scholar
[167]
J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
CrossRef ADS Google scholar
[168]
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics, Nature 514(7523), 470 (2014)
CrossRef ADS Google scholar
[169]
B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)
CrossRef ADS Google scholar
[170]
F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)
CrossRef ADS Google scholar
[171]
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)
CrossRef ADS Google scholar
[172]
F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics, Nat. Photonics 8(12), 899 (2014)
CrossRef ADS Google scholar
[173]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[174]
Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[175]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[176]
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[177]
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
CrossRef ADS Google scholar
[178]
Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide, Nature 513(7517), 214 (2014)
CrossRef ADS Google scholar
[179]
X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
CrossRef ADS Google scholar
[180]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[181]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[182]
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
CrossRef ADS Google scholar
[183]
C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett. 14(5), 2443 (2014)
CrossRef ADS Google scholar
[184]
M. M. Ugeda, A. J. Bradley, S. F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13(12), 1091 (2014)
CrossRef ADS Google scholar
[185]
W. Zhu, T. Low, Y.H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition, Nat. Commun. 5, 3087 (2014)
CrossRef ADS Google scholar
[186]
J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, and R. Zia, Orientation of luminescent excitons in layered nanomaterials, Nat. Nanotechnol. 8(4), 271 (2013)
CrossRef ADS Google scholar
[187]
D. F. Ogletree, P. J. Schuck, A. F. Weber-Bargioni, N. J. Borys, S. Aloni, W. Bao, S. Barja, J. Lee, M. Melli, K. Munechika, S. Whitelam, and S. Wickenburg, Revealing optical properties of reduced-dimensionality materials at relevant length scales, Adv. Mater. 27(38), 5693 (2015)
CrossRef ADS Google scholar
[188]
Y. Abate, S. Gamage, L. Zhen, S. B. Cronin, H. Wang, V. Babicheva, M. H. Javani, and M. I. Stockman, Nanoscopy reveals metallic black phosphorus, arXiv: 1506.05431
[189]
Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)
CrossRef ADS Google scholar
[190]
Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, and Z. Fang, Plasmonic hot electron induced structural phase transition in a MoS2 monolayer, Adv. Mater. 26(37), 6467 (2014)
CrossRef ADS Google scholar
[191]
W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging, Science 338(6112), 1317 (2012)
CrossRef ADS Google scholar
[192]
W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips, Opt. Express 21(7), 8166 (2013)
CrossRef ADS Google scholar
[193]
W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan, A. Thron, Y. Zhang, A. Buyanin, J. Zhang, S. Cabrini, P. D. Ashby, A. Weber-Bargioni, S. Tongay, S. Aloni, D. F. Ogletree, J. Wu, M. B. Salmeron, and P. J. Schuck, Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide, Nat. Commun. 6, 7993 (2015)
CrossRef ADS Google scholar
[194]
X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)
CrossRef ADS Google scholar
[195]
E. Devaux, A. Dereux, E. Bourillot, J. C. Weeber, Y. Lacroute, J. P. Goudonnet, and C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples, Phys. Rev. B 62(15), 10504 (2000)
CrossRef ADS Google scholar
[196]
Z. H. Kim and S. R. Leone, Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy, Opt. Express 16(3), 1733 (2008)
CrossRef ADS Google scholar
[197]
D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, Real-space mapping of the strongly coupled plasmons of nanoparticle dimers, Nano Lett. 9(10), 3619 (2009)
CrossRef ADS Google scholar
[198]
M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, Controlling the near-field oscillations of loaded plasmonic nanoantennas, Nat. Photonics 3(5), 287 (2009)
CrossRef ADS Google scholar
[199]
M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nanofocusing of mid-infrared energy with tapered transmission lines, Nat. Photonics 5(5), 283 (2011)
CrossRef ADS Google scholar
[200]
R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: A near-field optical vector network analyzer, Phys. Rev. Lett. 105(16), 167403 (2010)
CrossRef ADS Google scholar
[201]
R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Near-field imaging of optical antenna modes in the mid-infrared, Opt. Express 16(25), 20295 (2008)
CrossRef ADS Google scholar
[202]
N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, Plasmonic quantum cascade laser antenna, Appl. Phys. Lett. 91(17), 173113 (2007)
CrossRef ADS Google scholar
[203]
L. Novotny and C. Henkel, Van der Waals versus optical interaction between metal nanoparticles, Opt. Lett. 33(9), 1029 (2008)
CrossRef ADS Google scholar
[204]
J. Dorfmüller, D. Dregely, M. Esslinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, Near-field dynamics of optical Yagi-Uda nanoantennas, Nano Lett. 11(7), 2819 (2011)
CrossRef ADS Google scholar
[205]
T. Zentgraf, J. Dorfmuller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials, Opt. Lett. 33(8), 848 (2008)
CrossRef ADS Google scholar
[206]
B. Deutsch, R. Hillenbrand, and L. Novotny, Visualizing the optical interaction tensor of a gold nanoparticle pair, Nano Lett. 10(2), 652 (2010)
CrossRef ADS Google scholar
[207]
H. A. Bechtel, J. P. Camden, Z. H. Kim, D. J. A. Brown, and R. N. Zare, Abstracts of Papers of the American Chemical Society 228, U275 (2004)
[208]
P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Real-space mapping of fano interference in plasmonic metamolecules, Nano Lett. 11(9), 3922 (2011)
CrossRef ADS Google scholar
[209]
P. Uebel, M. A. Schmidt, H. W. Lee, and P. S. J. Russell, Polarisation-resolved near-field mapping of a coupled gold nanowire array, Opt. Express 20(27), 28409 (2012)
CrossRef ADS Google scholar
[210]
S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading, Appl. Phys. Lett. 101(13), 131102 (2012)
CrossRef ADS Google scholar
[211]
S. E. Grefe, D. Leiva, S. Mastel, S. D. Dhuey, S. Cabrini, P. J. Schuck, and Y. Abate, Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas, Phys. Chem. Chem. Phys. 15(43), 18944 (2013)
CrossRef ADS Google scholar
[212]
T. Bauer, S. Orlov, U. Peschel, P. Banzer, and G. Leuchs, Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams, Nat. Photonics 8(1), 23 (2014)
CrossRef ADS Google scholar
[213]
N. Ocelic, A. Huber, and R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy, Appl. Phys. Lett. 89(10), 101124 (2006)
CrossRef ADS Google scholar
[214]
M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Local observations of phase singularities in optical fields in waveguide structures, Phys. Rev. Lett. 85(2), 294 (2000)
CrossRef ADS Google scholar
[215]
A. Nesci, R. Dandliker, and H. P. Herzig, Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope, Opt. Lett. 26(4), 208 (2001)
CrossRef ADS Google scholar
[216]
E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Phys. Rev. Lett. 102(20), 203904 (2009)
CrossRef ADS Google scholar
[217]
M. Burresi, D. Diessel, D. Oosten, S. Linden, M. Wegener, and L. Kuipers, Negative-index metamaterials: Looking into the unit cell, Nano Lett. 10(7), 2480 (2010)
CrossRef ADS Google scholar
[218]
H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides, Phys. Rev. Lett. 94(12), 123901 (2005)
CrossRef ADS Google scholar
[219]
M. Ayache, M. P. Nezhad, S. Zamek, M. Abashin, and Y. Fainman, Near-field measurement of amplitude and phase in silicon waveguides with liquid cladding, Opt. Lett. 36(10), 1869 (2011)
CrossRef ADS Google scholar
[220]
M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, Observation of polarization singularities at the nanoscale, Phys. Rev. Lett. 102(3), 033902 (2009)
CrossRef ADS Google scholar
[221]
N. Rotenberg, T. L. Krijger, B. Feber, M. Spasenović, F. J. G. de Abajo, and L. Kuipers, Magnetic and electric response of single subwavelength holes, Phys. Rev. B 88(24), 241408 (2013)
CrossRef ADS Google scholar
[222]
M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Probing the magnetic field of light at optical frequencies, Science 326(5952), 550 (2009)
CrossRef ADS Google scholar
[223]
M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett. 105(12), 123901 (2010)
CrossRef ADS Google scholar
[224]
S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett. 105(12), 123902 (2010)
CrossRef ADS Google scholar
[225]
M. Spasenović, D. M. Beggs, P. Lalanne, T. F. Krauss, and L. Kuipers, Measuring the spatial extent of individual localized photonic states, Phys. Rev. B 86(15), 155153 (2012)
CrossRef ADS Google scholar
[226]
S. R. Huisman, G. Ctistis, S. Stobbe, A. P. Mosk, J. L. Herek, A. Lagendijk, P. Lodahl, W. L. Vos, and P. W. H. Pinkse, Measurement of a band-edge tail in the density of states of a photonic-crystal waveguide, Phys. Rev. B 86(15), 155154 (2012)
CrossRef ADS Google scholar
[227]
D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. V. Dorpe, and V. V. Moshchalkov, Mapping magnetic near-field distributions of plasmonic nanoantennas, ACS Nano 7(4), 3168 (2013)
CrossRef ADS Google scholar
[228]
D. Denkova, N. Verellen, A. V. Silhanek, P. Van Dorpe, and V. V. Moshchalkov, Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity, Small 10(10), 1959 (2014)
CrossRef ADS Google scholar
[229]
H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, Bethe-hole polarization analyser for the magnetic vector of light, Nat. Commun. 2, 451 (2011)
CrossRef ADS Google scholar
[230]
H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D. S. Kim, Optical magnetic field mapping using a subwavelength aperture, Opt. Express 21(5), 5625 (2013)
CrossRef ADS Google scholar
[231]
B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields, Nat. Photonics 8(1), 43 (2014)
CrossRef ADS Google scholar
[232]
N. Caselli, F. La China, W. Bao, F. Riboli, A. Gerardino, L. Li, E. H. Linfield, F. Pagliano, A. Fiore, P. J. Schuck, S. Cabrini, A. Weber-Bargioni, M. Gurioli, and F. Intonti, Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna, Sci. Rep. 5, 9606 (2015)
CrossRef ADS Google scholar
[233]
H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, Accessing the optical magnetic near-field through Babinet’s principle, ACS Photonics 1(9), 894 (2014)
CrossRef ADS Google scholar
[234]
L. Novotny, R. X. Bian, and X. S. Xie, Theory of nanometric optical tweezers, Phys. Rev. Lett. 79(4), 645 (1997)
CrossRef ADS Google scholar
[235]
J. Berthelot, S. S. Acimovic, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, Three-dimensional manipulation with scanning near-field optical nanotweezers, Nat. Nanotechnol. 9(4), 295 (2014)
CrossRef ADS Google scholar
[236]
R. M. Gelfand, S. Wheaton, and R. Gordon, Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles, Opt. Lett. 39(22), 6415 (2014)
CrossRef ADS Google scholar
[237]
J. Jose, S. Kress, A. Barik, L. M. Otto, J. Shaver, T. W. Johnson, Z. J. Lapin, P. Bharadwaj, L. Novotny, and S. H. Oh, Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis, ACS Photonics 1(5), 464 (2014)
CrossRef ADS Google scholar
[238]
N. M. Hameed, A. El Eter, T. Grosjean, and F. I. Baida, Stand-alone three-dimensional optical tweezers based on fibred Bowtie nanoaperture, IEEE Photonics J. 6(4), 4500510 (2014)
CrossRef ADS Google scholar
[239]
S. Wheaton, R. M. Gelfand, and R. Gordon, Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution, Nat. Photonics 9(1), 68 (2015)
CrossRef ADS Google scholar
[240]
A. A. AlBalushi and R. Gordon, A label-free Untethered approach to single-molecule protein binding kinetics, Nano Lett. 14(10), 5787 (2014)
CrossRef ADS Google scholar
[241]
H. K. Wickramasinghe, M. Chaigneau, R. Yasukuni, G. Picardi, and R. Ossikovski, Billion-fold increase in tip-enhanced Raman signal, ACS Nano 8(4), 3421 (2014)
CrossRef ADS Google scholar
[242]
I. Rajapaksa, K. Uenal, and H. K. Wickramasinghe, Image force microscopy of molecular resonance: A microscope principle, Appl. Phys. Lett. 97(7), 073121 (2010)
CrossRef ADS Google scholar
[243]
J. Jahng, J. Brocious, D. A. Fishman, F. Huang, X. Li, V. A. Tamma, H. K. Wickramasinghe, and E. O. Potma, Gradient and scattering forces in photoinduced force microscopy, Phys. Rev. B 90(15), 155417 (2014)
CrossRef ADS Google scholar
[244]
J. Jahng, J. Brocious, D. A. Fishman, S. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma, Ultrafast pump-probe force microscopy with nanoscale resolution, Appl. Phys. Lett. 106(8), 083113 (2015)
CrossRef ADS Google scholar
[245]
R. M. Gelfand, A. Bonakdar, O. G. Memis, and H. Mohseni, Super resolution mapping of the near optical field and the gradient optical force, Proc. SPIE 8815, Nanoimaging and Nanospectroscopy 8815, 88150R (2013)
CrossRef ADS Google scholar
[246]
A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. P. Zaccaria, M. I. Stockman, and E. Di Fabrizio, Hot-electron nanoscopy using adiabatic compression of surface plasmons, Nat. Nanotechnol. 8(11), 845 (2013)
CrossRef ADS Google scholar
[247]
P. J. Schuck, Nanoimaging: Hot electrons go through the barrier, Nat. Nanotechnol. 8(11), 799 (2013)
CrossRef ADS Google scholar
[248]
A. O. Govorov, H. Zhang, and Y. K. Gun'ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules, J. Phys. Chem. C 117(32), 16616 (2013)
CrossRef ADS Google scholar
[249]
A. Polyakov, C. Senft, K. F. Thompson, J. Feng, S. Cabrini, P. J. Schuck, H. A. Padmore, S. J. Peppernick, and W. P. Hess, Plasmon-enhanced photocathode for high brightness and high repetition rate X-ray sources, Phys. Rev. Lett. 110(7), 076802 (2013)
CrossRef ADS Google scholar
[250]
W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics 3(4), 220 (2009)
CrossRef ADS Google scholar
[251]
B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna, Nat. Photonics 4(7), 484 (2010)
CrossRef ADS Google scholar
[252]
R. Vincent, H. Marinchio, J. J. Saenz, and R. Carminati, Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect, Phys. Rev. B 90(24), 241412 (2014)
CrossRef ADS Google scholar
[253]
P. S. Keatley, A. Aziz, M. Ali, B. J. Hickey, M. G. Blamire, and R. J. Hicken, Optical characterization of nonlocal spin transfer torque acting on a single nanomagnet, Phys. Rev. B 89(9), 094421 (2014)
CrossRef ADS Google scholar
[254]
P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Cross resonant optical antenna, Phys. Rev. Lett. 102(25), 256801 (2009)
CrossRef ADS Google scholar
[255]
Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, Manipulating nanoscale light fields with the asymmetric Bowtie nano-colorsorter, Nano Lett. 9(12), 4505 (2009)
CrossRef ADS Google scholar
[256]
A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy, Phys. Rev. Lett. 106(3), 037402 (2011)
CrossRef ADS Google scholar
[257]
P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, Near-field polarization shaping by a near-resonant plasmonic cross antenna, Phys. Rev. B 80(15), 153409 (2009)
CrossRef ADS Google scholar
[258]
D. Lin and J. S. Huang, Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement, Opt. Express 22(7), 7434 (2014)
CrossRef ADS Google scholar
[259]
Y. Tang and A. E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light, Science 332(6027), 333 (2011)
CrossRef ADS Google scholar
[260]
E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields, Nat. Nanotechnol. 5(11), 783 (2010)
CrossRef ADS Google scholar
[261]
B. le Feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nat. Commun. 6, 6695 (2015)
CrossRef ADS Google scholar
[262]
I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Deterministic photon–emitter coupling in chiral photonic circuits, Nat. Nanotechnol. 10(9), 775 (2015)
CrossRef ADS Google scholar
[263]
J. Rudge, H. Xu, J. Kolthammer, Y. K. Hong, and B. C. Choi, Sub-nanosecond time-resolved near-field scanning magneto-optical microscope, Rev. Sci. Instrum. 86(2), 023703 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(588 KB)

Part of a collection:

Frontiers of Plasmonics (Ed. Hong-Xing Xu)

847

Accesses

8

Citations

Detail

Sections
Recommended

/