Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures

Hong-Yan Liang, Hong Wei, Hong-Xing Xu

PDF(841 KB)
PDF(841 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (2) : 117301. DOI: 10.1007/s11467-015-0524-7
REVIEW ARTICLE
REVIEW ARTICLE

Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures

Author information +
History +

Abstract

Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can support transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies devoted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostructures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.

Keywords

electron energy loss spectroscopy (EELS) / localized surface plasmon resonance (LSPR) / multipolar longitudinal plasmon mode / nanocarrot / nanorice / plasmonic sensing

Cite this article

Download citation ▾
Hong-Yan Liang, Hong Wei, Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures. Front. Phys., 2016, 11(2): 117301 https://doi.org/10.1007/s11467-015-0524-7

References

[1]
W. A. Murray and W. L. Barnes, Plasmonic materials, Adv. Mater. 19(22), 3771 (2007)
CrossRef ADS Google scholar
[2]
H. Wei and H. X. Xu, Plasmonics in composite nanostructures, Mater. Today 17(8), 372 (2014)
CrossRef ADS Google scholar
[3]
L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, Optical properties of single coupled plasmonic nanoparticles, Phys. Chem. Chem. Phys. 15(12), 4100 (2013)
CrossRef ADS Google scholar
[4]
L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)
CrossRef ADS Google scholar
[5]
O. Stranik, J. Jatschka, A. Csakiand, and W. Fritzsche, Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding, Front. Phys. 9(5), 652 (2014)
CrossRef ADS Google scholar
[6]
K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111(6), 3828 (2011)
CrossRef ADS Google scholar
[7]
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
CrossRef ADS Google scholar
[8]
H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering, Phys. Rev. E 62, 4318 (2000)
CrossRef ADS Google scholar
[9]
H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater. 21(45), 4614 (2009)
CrossRef ADS Google scholar
[10]
H. Y. Liang, Z. P. Li, Z. X. Wang, W. Z. Wang, F. Rosei, D. Ma, and H. X. Xu, Enormous surface-enhanced Raman scattering from dimers of flower-like silver mesoparticles, Small 8(22), 3400 (2012)
CrossRef ADS Google scholar
[11]
H. X. Xu, Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy, Appl. Phys. Lett. 85(24), 5980 (2004)
CrossRef ADS Google scholar
[12]
H. Wei and H. X. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy, Nanoscale 5(22), 10794 (2013)
CrossRef ADS Google scholar
[13]
A. M. Michaels, J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules, J. Phys. Chem. B 104(50), 11965 (2000)
CrossRef ADS Google scholar
[14]
M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective, J. Raman Spectrosc. 36(6-7), 485 (2005)
CrossRef ADS Google scholar
[15]
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)
CrossRef ADS Google scholar
[16]
F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures andits applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
CrossRef ADS Google scholar
[17]
Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
CrossRef ADS Google scholar
[18]
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef ADS Google scholar
[19]
L. M. Tong, H. Wei, S. P. Zhang, and H. X. Xu, Recent advances in plasmonic sensors, Sensors 14(5), 7959 (2014)
CrossRef ADS Google scholar
[20]
H. X. Xu and M. Kall, Modeling the optical response of nanoparticle-based surface plasmon resonance sensors, Sens. Actuators B Chem. 87(2), 244 (2002)
CrossRef ADS Google scholar
[21]
H. X. Xu and M. Käll, Surface-plasmon-enhanced optical forces in silver nanoaggregates, Phys. Rev. Lett. 89(24), 246802 (2002)
CrossRef ADS Google scholar
[22]
F. Svedberg, Z. Li, H. Xu, and M. Käll, Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation, Nano Lett. 6(12), 2639 (2006)
CrossRef ADS Google scholar
[23]
M. L. Juan, M. Righini, and R. Quidant, Plasmon nano-optical tweezers, Nat. Photonics 5(6), 349 (2011)
CrossRef ADS Google scholar
[24]
T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA 105(43), 16448 (2008)
CrossRef ADS Google scholar
[25]
V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111(6), 3888 (2011)
CrossRef ADS Google scholar
[26]
Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano 3(3), 637 (2009)
CrossRef ADS Google scholar
[27]
B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, Correlated optical measurements and plasmon mapping of silver nanorods, Nano Lett. 11(8), 3482 (2011)
CrossRef ADS Google scholar
[28]
A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance, ACS Nano 4(9), 5453 (2010)
CrossRef ADS Google scholar
[29]
S. P. Zhang, L. Chen, Y. Z. Huang, and H. X. Xu, Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications, Nanoscale 5(15), 6985 (2013)
CrossRef ADS Google scholar
[30]
S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103(40), 8410 (1999)
CrossRef ADS Google scholar
[31]
L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold nanorods: Synthesis, self-assembly, and sensing applications., Adv. Mater. 24(36), 4811–5014 (2012)
[32]
J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)
CrossRef ADS Google scholar
[33]
M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317(6), 517 (2000)
CrossRef ADS Google scholar
[34]
G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Lett. 8(2), 631 (2008)
CrossRef ADS Google scholar
[35]
H. Y. Liang, W. Z. Wang, Y. Z. Huang, S. P. Zhang, H. Wei, and H. X. Xu, Controlled synthesis of uniform silver nanospheres, J. Phys. Chem. C 114(16), 7427 (2010)
CrossRef ADS Google scholar
[36]
D. Rossouw and G. A. Botton, Resonant optical excitations in complementary plasmonic nanostructures, Opt. Express 20(7), 6968 (2012)
CrossRef ADS Google scholar
[37]
A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)
CrossRef ADS Google scholar
[38]
P. Zijlstra, P. M. R. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol. 7(6), 379 (2012)
CrossRef ADS Google scholar
[39]
H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, and H. X. Xu, High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals, J. Am. Chem. Soc. 131(17), 6068 (2009)
CrossRef ADS Google scholar
[40]
H. Y. Liang, D. Rossouw, H. G. Zhao, S. K. Cushing, H. L. Shi, A. Korinek, H. X. Xu, F. Rosei, W. Z. Wang, N. Q. Wu, G. A. Botton, and D. L. Ma, Asymmetric silver “nanocarrot” structures: Solution synthesis and their asymmetric plasmonic resonances, J. Am. Chem. Soc. 135(26), 9616 (2013)
CrossRef ADS Google scholar
[41]
H. Y. Liang, H. G. Zhao, D. Rossouw, W. Z. Wang, H. X. Xu, G. A. Botton, and D. L. Ma, Silver nanorice structures: oriented attachment-dominated growth, high environmental sensitivity, and real-space visualization of multipolar resonances, Chem. Mater. 24(12), 2339 (2012)
CrossRef ADS Google scholar
[42]
H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. X. Xu, Multipolar plasmon resonances in individual ag nanorice, ACS Nano 4(5), 2649 (2010)
CrossRef ADS Google scholar
[43]
X. Tong, H. Y. Liang, Y. L. Liu, L. Tan, D. L. Ma, and Y. Zhao, Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films, Nanoscale 7(19), 8858 (2015)
CrossRef ADS Google scholar
[44]
F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts, ACS Nano 6(10), 8989 (2012)
CrossRef ADS Google scholar
[45]
J. S. Sekhon and S. S. Verma, Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles, Plasmonics 6(2), 311 (2011)
CrossRef ADS Google scholar
[46]
X. R. Tian, Y. R. Fang, and B. L. Zhang, Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers, ACS Photonics 1(11), 1156 (2014)
CrossRef ADS Google scholar
[47]
L. Chen, H. Wei, K. Q. Chen, and H. X. Xu, High-order plasmon resonances in an Ag/Al2O3 core/ shell nanorice, Chin. Phys. B 23(2), 027303 (2014)
CrossRef ADS Google scholar
[48]
S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6(11), 2630 (2006)
CrossRef ADS Google scholar
[49]
M. Li, S. K. Cushing, H. Y. Liang, S. Suri, D. L. Ma, and N. Q. Wu, Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA, Anal. Chem. 85(4), 2072 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(841 KB)

Accesses

Citations

Detail

Sections
Recommended

/