Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures
Hong-Yan Liang, Hong Wei, Hong-Xing Xu
Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures
Noble metallic nanostructures exhibit special optical properties resulting from excitation of surface plasmons. Among the various metallic nanostructures, nanorods have attracted particular attention because of their unique and intriguing shape-dependent plasmonic properties. Nanorods can support transverse and longitudinal plasmon modes, the latter ones depending strongly on the aspect ratio of the nanorod. These modes can be routinely tuned from the visible to the near-infrared spectral regions. Although nanorods have been investigated extensively, there are few studies devoted to nanostructures deviating from the nanorod shape. This review provides an overview of recent progress in the development of two kinds of novel quasi-one-dimensional silver nanostructures, nanorice and nanocarrot, including their syntheses, crystalline characterizations, plasmonic property analyses, and performance in plasmonic sensing applications.
electron energy loss spectroscopy (EELS) / localized surface plasmon resonance (LSPR) / multipolar longitudinal plasmon mode / nanocarrot / nanorice / plasmonic sensing
[1] |
W. A. Murray and W. L. Barnes, Plasmonic materials, Adv. Mater. 19(22), 3771 (2007)
CrossRef
ADS
Google scholar
|
[2] |
H. Wei and H. X. Xu, Plasmonics in composite nanostructures, Mater. Today 17(8), 372 (2014)
CrossRef
ADS
Google scholar
|
[3] |
L. Tong, H. Wei, S. Zhang, Z. Li, and H. Xu, Optical properties of single coupled plasmonic nanoparticles, Phys. Chem. Chem. Phys. 15(12), 4100 (2013)
CrossRef
ADS
Google scholar
|
[4] |
L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[5] |
O. Stranik, J. Jatschka, A. Csakiand, and W. Fritzsche, Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding, Front. Phys. 9(5), 652 (2014)
CrossRef
ADS
Google scholar
|
[6] |
K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111(6), 3828 (2011)
CrossRef
ADS
Google scholar
|
[7] |
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. 83(21), 4357 (1999)
CrossRef
ADS
Google scholar
|
[8] |
H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering, Phys. Rev. E 62, 4318 (2000)
CrossRef
ADS
Google scholar
|
[9] |
H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater. 21(45), 4614 (2009)
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Liang, Z. P. Li, Z. X. Wang, W. Z. Wang, F. Rosei, D. Ma, and H. X. Xu, Enormous surface-enhanced Raman scattering from dimers of flower-like silver mesoparticles, Small 8(22), 3400 (2012)
CrossRef
ADS
Google scholar
|
[11] |
H. X. Xu, Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy, Appl. Phys. Lett. 85(24), 5980 (2004)
CrossRef
ADS
Google scholar
|
[12] |
H. Wei and H. X. Xu, Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy, Nanoscale 5(22), 10794 (2013)
CrossRef
ADS
Google scholar
|
[13] |
A. M. Michaels, J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules, J. Phys. Chem. B 104(50), 11965 (2000)
CrossRef
ADS
Google scholar
|
[14] |
M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective, J. Raman Spectrosc. 36(6-7), 485 (2005)
CrossRef
ADS
Google scholar
|
[15] |
J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464(7287), 392 (2010)
CrossRef
ADS
Google scholar
|
[16] |
F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures andits applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)
CrossRef
ADS
Google scholar
|
[17] |
Z. H. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)
CrossRef
ADS
Google scholar
|
[18] |
Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)
CrossRef
ADS
Google scholar
|
[19] |
L. M. Tong, H. Wei, S. P. Zhang, and H. X. Xu, Recent advances in plasmonic sensors, Sensors 14(5), 7959 (2014)
CrossRef
ADS
Google scholar
|
[20] |
H. X. Xu and M. Kall, Modeling the optical response of nanoparticle-based surface plasmon resonance sensors, Sens. Actuators B Chem. 87(2), 244 (2002)
CrossRef
ADS
Google scholar
|
[21] |
H. X. Xu and M. Käll, Surface-plasmon-enhanced optical forces in silver nanoaggregates, Phys. Rev. Lett. 89(24), 246802 (2002)
CrossRef
ADS
Google scholar
|
[22] |
F. Svedberg, Z. Li, H. Xu, and M. Käll, Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation, Nano Lett. 6(12), 2639 (2006)
CrossRef
ADS
Google scholar
|
[23] |
M. L. Juan, M. Righini, and R. Quidant, Plasmon nano-optical tweezers, Nat. Photonics 5(6), 349 (2011)
CrossRef
ADS
Google scholar
|
[24] |
T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA 105(43), 16448 (2008)
CrossRef
ADS
Google scholar
|
[25] |
V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111(6), 3888 (2011)
CrossRef
ADS
Google scholar
|
[26] |
Z. P. Li, T. Shegai, G. Haran, and H. X. Xu, Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano 3(3), 637 (2009)
CrossRef
ADS
Google scholar
|
[27] |
B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, Correlated optical measurements and plasmon mapping of silver nanorods, Nano Lett. 11(8), 3482 (2011)
CrossRef
ADS
Google scholar
|
[28] |
A. L. Schmucker, N. Harris, M. J. Banholzer, M. G. Blaber, K. D. Osberg, G. C. Schatz, and C. A. Mirkin, Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance, ACS Nano 4(9), 5453 (2010)
CrossRef
ADS
Google scholar
|
[29] |
S. P. Zhang, L. Chen, Y. Z. Huang, and H. X. Xu, Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications, Nanoscale 5(15), 6985 (2013)
CrossRef
ADS
Google scholar
|
[30] |
S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103(40), 8410 (1999)
CrossRef
ADS
Google scholar
|
[31] |
L. Vigderman, B. P. Khanal, and E. R. Zubarev, Functional gold nanorods: Synthesis, self-assembly, and sensing applications., Adv. Mater. 24(36), 4811–5014 (2012)
|
[32] |
J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)
CrossRef
ADS
Google scholar
|
[33] |
M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317(6), 517 (2000)
CrossRef
ADS
Google scholar
|
[34] |
G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas, Nano Lett. 8(2), 631 (2008)
CrossRef
ADS
Google scholar
|
[35] |
H. Y. Liang, W. Z. Wang, Y. Z. Huang, S. P. Zhang, H. Wei, and H. X. Xu, Controlled synthesis of uniform silver nanospheres, J. Phys. Chem. C 114(16), 7427 (2010)
CrossRef
ADS
Google scholar
|
[36] |
D. Rossouw and G. A. Botton, Resonant optical excitations in complementary plasmonic nanostructures, Opt. Express 20(7), 6968 (2012)
CrossRef
ADS
Google scholar
|
[37] |
A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Plasmonic nanorod metamaterials for biosensing, Nat. Mater. 8(11), 867 (2009)
CrossRef
ADS
Google scholar
|
[38] |
P. Zijlstra, P. M. R. Paulo, and M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotechnol. 7(6), 379 (2012)
CrossRef
ADS
Google scholar
|
[39] |
H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, and H. X. Xu, High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals, J. Am. Chem. Soc. 131(17), 6068 (2009)
CrossRef
ADS
Google scholar
|
[40] |
H. Y. Liang, D. Rossouw, H. G. Zhao, S. K. Cushing, H. L. Shi, A. Korinek, H. X. Xu, F. Rosei, W. Z. Wang, N. Q. Wu, G. A. Botton, and D. L. Ma, Asymmetric silver “nanocarrot” structures: Solution synthesis and their asymmetric plasmonic resonances, J. Am. Chem. Soc. 135(26), 9616 (2013)
CrossRef
ADS
Google scholar
|
[41] |
H. Y. Liang, H. G. Zhao, D. Rossouw, W. Z. Wang, H. X. Xu, G. A. Botton, and D. L. Ma, Silver nanorice structures: oriented attachment-dominated growth, high environmental sensitivity, and real-space visualization of multipolar resonances, Chem. Mater. 24(12), 2339 (2012)
CrossRef
ADS
Google scholar
|
[42] |
H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. X. Xu, Multipolar plasmon resonances in individual ag nanorice, ACS Nano 4(5), 2649 (2010)
CrossRef
ADS
Google scholar
|
[43] |
X. Tong, H. Y. Liang, Y. L. Liu, L. Tan, D. L. Ma, and Y. Zhao, Anisotropic optical properties of oriented silver nanorice and nanocarrots in stretched polymer films, Nanoscale 7(19), 8858 (2015)
CrossRef
ADS
Google scholar
|
[44] |
F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts, ACS Nano 6(10), 8989 (2012)
CrossRef
ADS
Google scholar
|
[45] |
J. S. Sekhon and S. S. Verma, Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles, Plasmonics 6(2), 311 (2011)
CrossRef
ADS
Google scholar
|
[46] |
X. R. Tian, Y. R. Fang, and B. L. Zhang, Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers, ACS Photonics 1(11), 1156 (2014)
CrossRef
ADS
Google scholar
|
[47] |
L. Chen, H. Wei, K. Q. Chen, and H. X. Xu, High-order plasmon resonances in an Ag/Al2O3 core/ shell nanorice, Chin. Phys. B 23(2), 027303 (2014)
CrossRef
ADS
Google scholar
|
[48] |
S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 6(11), 2630 (2006)
CrossRef
ADS
Google scholar
|
[49] |
M. Li, S. K. Cushing, H. Y. Liang, S. Suri, D. L. Ma, and N. Q. Wu, Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA, Anal. Chem. 85(4), 2072 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |