Importance of proper renormalization scale-setting for QCD testing at colliders
Xing-Gang Wu, Sheng-Quan Wang, Stanley J. Brodsky
Importance of proper renormalization scale-setting for QCD testing at colliders
A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing t invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. These results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.
QCD / proper renormalization scale-setting / PMC / high-energy colliders
[1] |
X. G. Wu, S. J. Brodsky, and M. Mojaza, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys.72, 44 (2013)
CrossRef
ADS
Google scholar
|
[2] |
M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95, 1300 (1954)
CrossRef
ADS
Google scholar
|
[3] |
S. J. Brodsky and X. G. Wu, Scale setting using the extended renormalization group and the principle of maximum conformality: The QCD coupling constant at four loops, Phys. Rev. D 85, 034038 (2012) [Phys. Rev. D86, 079903 (2012)]
CrossRef
ADS
Google scholar
|
[4] |
S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to top-pair production, Phys. Rev. D 86, 014021 (2012) [Phys. Rev. D 87, 099902 (2013)]
CrossRef
ADS
Google scholar
|
[5] |
S. J. Brodsky and X. G. Wu, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett. 109, 042002 (2012).
CrossRef
ADS
Google scholar
|
[6] |
S. J. Brodsky and L. Di Giustino, Setting the renormalization scale in QCD: The principle of maximum conformality, Phys. Rev. D 86, 085026 (2012)
CrossRef
ADS
Google scholar
|
[7] |
M. Mojaza, S. J. Brodsky, and X. G. Wu, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett. 110, 192001 (2013)
CrossRef
ADS
Google scholar
|
[8] |
S. J. Brodsky, M. Mojaza, and X. G. Wu, Systematic scalesetting to all orders: The principle of maximum conformality and commensurate scale relations, Phys. Rev. D 89, 014027 (2014)
CrossRef
ADS
Google scholar
|
[9] |
X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, Renormalization group invariance and optimal QCD renormalization scale-setting, arXiv:1405.3196 [hep-ph]
|
[10] |
S. J. Brodsky and X. G. Wu, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D 86, 054018 (2012)
CrossRef
ADS
Google scholar
|
[11] |
S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28, 228 (1983)
CrossRef
ADS
Google scholar
|
[12] |
S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and G. B. Pivovarov, The QCD pomeron with optimal renormalization, JETP Lett. 70, 155 (1999)
CrossRef
ADS
Google scholar
|
[13] |
M. Hentschinski, A. Sabio Vera, and C. Salas, Hard to soft pomeron transition in small-x deep inelastic scattering data using optimal renormalization, Phys. Rev. Lett. 110, 041601 (2013)
CrossRef
ADS
Google scholar
|
[14] |
X. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen, and Q. L. Zhang, Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy, J. High Energy Phys. 1310, 117 (2013)
CrossRef
ADS
Google scholar
|
[15] |
F. Caporale, D. Y. Ivanov, B. Murdaca, and A. Papa, Brodsky–Lepage–Mackenzie optimal renormalization scale setting for semihard processes, Phys. Rev. D 91, 114009 (2015)
CrossRef
ADS
Google scholar
|
[16] |
S. Q. Wang, X. G. Wu, X. C. Zheng, G. Chen, and J. M. Shen, An analysis of H → γγ up to three-loop QCD corrections, J. Phys. G 41, 075010 (2014)
CrossRef
ADS
Google scholar
|
[17] |
S. Q. Wang, X. G. Wu, X. C. Zheng, J. M. Shen, and Q. L. Zhang, The Higgs boson inclusive decay channels H → b
CrossRef
ADS
Google scholar
|
[18] |
D. M. Zeng, S. Q. Wang, X. G. Wu, and J. M. Shen, The Higgs–Boson decay H → ggto order α5s under the mMOMscheme, arXiv: 1507.03222 [hep-ph]
|
[19] |
S. Q. Wang, X. G. Wu, and S. J. Brodsky, Reanalysis of the higher order perturbative QCD corrections to hadronic Z decays using the principle of maximum conformality, Phys.Rev. D 90, 037503 (2014)
CrossRef
ADS
Google scholar
|
[20] |
J. M. Shen, X. G. Wu, H. H. Ma, H. Y. Bi, and S. Q. Wang, Renormalization group improved pQCD prediction for Ɣ(1S) leptonic decay, J. High Energy Phys. 1506, 169(2015)
CrossRef
ADS
Google scholar
|
[21] |
S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to the top-quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 85, 114040 (2012)
CrossRef
ADS
Google scholar
|
[22] |
S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Application of the principle of maximum conformality to the top-quark charge asymmetry at the LHC, Phys. Rev. D 90, 114034 (2014)
CrossRef
ADS
Google scholar
|
[23] |
S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality, arXiv: 1508.03739 [hep-ph]
|
[24] |
C. F. Qiao, R. L. Zhu, X. G. Wu, and S. J. Brodsky, A possible solution to the B→ ππ puzzle using the principle of maximum conformality, Phys. Lett. B 748, 422 (2015) [arXiv: 1408.1158 [hep-ph]]
CrossRef
ADS
Google scholar
|
[25] |
H. Baer, et al., The International Linear Collider Technical Design Report- Volume 2: Physics, arXiv: 1306.6352 [hep-ph]
|
[26] |
J. P. Ma and Z. X. Zhang, The super Z-factory group, Sci. China: Phys. Mech. Astron. 53, 1947 (2010)
|
[27] |
P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn and J. Rittinger, Complete O(α4s) QCD corrections to hadronic Z decays, Phys. Rev. Lett. 108, 222003 (2012)
CrossRef
ADS
Google scholar
|
[28] |
P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order O(α4s) QCD corrections to Zand tau decays, Phys. Rev. Lett. 101, 012002 (2008)
CrossRef
ADS
Google scholar
|
[29] |
P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Adler function, Bjorken sum rule, and the Crewther relation to order O(α4s) in a general gauge theory, Phys. Rev. Lett. 104, 132004 (2010)
CrossRef
ADS
Google scholar
|
[30] |
P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and J. Rittinger, Adler function, sum rules and Crewther relation of order O(α4s): The singlet case, Phys. Lett. B 714, 62 (2012)
CrossRef
ADS
Google scholar
|
[31] |
M. Czakon, P. Fiedler, and A. Mitov, Resolving the Tevatron top quark forward-backward asymmetry puzzle, Phys. Rev. Lett. 115, 052001 (2015)
CrossRef
ADS
Google scholar
|
[32] |
M. Neubert, Scale setting in QCD and the momentum flow in Feynman diagrams, Phys. Rev. D 51, 5924 (1995)
CrossRef
ADS
Google scholar
|
[33] |
M. Beneke and V. M. Braun, Naive non-Abelianization and resummation of fermion bubble chains, Phys. Lett. B 348, 513 (1995)
CrossRef
ADS
Google scholar
|
[34] |
S. J. Brodsky, A. H. Hoang, J. H. Kuhn, and T. Teubner, Angular distributions of massive quarks and leptons close to threshold, Phys. Lett. B 359, 355 (1995)
CrossRef
ADS
Google scholar
|
[35] |
H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M. Mojaza, Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale, Phys. Lett. B 748, 13 (2015)
CrossRef
ADS
Google scholar
|
[36] |
T. A. Aaltonen, et al. (CDF and D0 Collaborations), Combination of measurements of the top-quark pair production cross section from the Tevatron Collider, Phys. Rev. D 89, 072001 (2014)
CrossRef
ADS
Google scholar
|
[37] |
S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Light-front holographic QCD and emerging confinement, Phys. Rep. 584, 1 (2015)
CrossRef
ADS
Google scholar
|
[38] |
V. M. Abazov, et al. (D0 Collaboration), Measurement of the forward-backward asymmetry in top quark-antiquark production in ppbar collisions using the lepton+jets channel, Phys. Rev. D 90, 072011 (2014)
CrossRef
ADS
Google scholar
|
[39] |
V. M. Abazov, et al. (D0 Collaboration), Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from t
|
[40] |
T. Aaltonen, et al. (CDF Collaboration), Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83, 112003 (2011)
CrossRef
ADS
Google scholar
|
[41] |
T. Aaltonen, et al. (CDF Collaboration), Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87, 092002 (2013)
CrossRef
ADS
Google scholar
|
[42] |
S. J. Brodsky and H. J. Lu, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D 51, 3652 (1995)
CrossRef
ADS
Google scholar
|
[43] |
A. H. Hoang, J. H. Kuhn, and T. Teubner, Radiation of light fermions in heavy fermion production, Nucl. Phys. B 452, 173 (1995)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |