Importance of proper renormalization scale-setting for QCD testing at colliders

Xing-Gang Wu, Sheng-Quan Wang, Stanley J. Brodsky

PDF(350 KB)
PDF(350 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (1) : 111201. DOI: 10.1007/s11467-015-0518-5
REVIEW ARTICLE
REVIEW ARTICLE

Importance of proper renormalization scale-setting for QCD testing at colliders

Author information +
History +

Abstract

A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower energies, the angular distributions of heavy quarks can be used to obtain a direct determination of the heavy quark potential. A discussion of the angular distributions of massive quarks and leptons is also presented, including the fermionic component of the two-loop corrections to the electromagnetic form factors. These results demonstrate that the application of the PMC systematically eliminates a major theoretical uncertainty for pQCD predictions, thus increasing collider sensitivity to possible new physics beyond the Standard Model.

Keywords

QCD / proper renormalization scale-setting / PMC / high-energy colliders

Cite this article

Download citation ▾
Xing-Gang Wu, Sheng-Quan Wang, Stanley J. Brodsky. Importance of proper renormalization scale-setting for QCD testing at colliders. Front. Phys., 2016, 11(1): 111201 https://doi.org/10.1007/s11467-015-0518-5

References

[1]
X. G. Wu, S. J. Brodsky, and M. Mojaza, The renormalization scale-setting problem in QCD, Prog. Part. Nucl. Phys.72, 44 (2013)
CrossRef ADS Google scholar
[2]
M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95, 1300 (1954)
CrossRef ADS Google scholar
[3]
S. J. Brodsky and X. G. Wu, Scale setting using the extended renormalization group and the principle of maximum conformality: The QCD coupling constant at four loops, Phys. Rev. D 85, 034038 (2012) [Phys. Rev. D86, 079903 (2012)]
CrossRef ADS Google scholar
[4]
S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to top-pair production, Phys. Rev. D 86, 014021 (2012) [Phys. Rev. D 87, 099902 (2013)]
CrossRef ADS Google scholar
[5]
S. J. Brodsky and X. G. Wu, Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality, Phys. Rev. Lett. 109, 042002 (2012).
CrossRef ADS Google scholar
[6]
S. J. Brodsky and L. Di Giustino, Setting the renormalization scale in QCD: The principle of maximum conformality, Phys. Rev. D 86, 085026 (2012)
CrossRef ADS Google scholar
[7]
M. Mojaza, S. J. Brodsky, and X. G. Wu, Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD, Phys. Rev. Lett. 110, 192001 (2013)
CrossRef ADS Google scholar
[8]
S. J. Brodsky, M. Mojaza, and X. G. Wu, Systematic scalesetting to all orders: The principle of maximum conformality and commensurate scale relations, Phys. Rev. D 89, 014027 (2014)
CrossRef ADS Google scholar
[9]
X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, Renormalization group invariance and optimal QCD renormalization scale-setting, arXiv:1405.3196 [hep-ph]
[10]
S. J. Brodsky and X. G. Wu, Self-consistency requirements of the renormalization group for setting the renormalization scale, Phys. Rev. D 86, 054018 (2012)
CrossRef ADS Google scholar
[11]
S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics, Phys. Rev. D 28, 228 (1983)
CrossRef ADS Google scholar
[12]
S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov, and G. B. Pivovarov, The QCD pomeron with optimal renormalization, JETP Lett. 70, 155 (1999)
CrossRef ADS Google scholar
[13]
M. Hentschinski, A. Sabio Vera, and C. Salas, Hard to soft pomeron transition in small-x deep inelastic scattering data using optimal renormalization, Phys. Rev. Lett. 110, 041601 (2013)
CrossRef ADS Google scholar
[14]
X. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen, and Q. L. Zhang, Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy, J. High Energy Phys. 1310, 117 (2013)
CrossRef ADS Google scholar
[15]
F. Caporale, D. Y. Ivanov, B. Murdaca, and A. Papa, Brodsky–Lepage–Mackenzie optimal renormalization scale setting for semihard processes, Phys. Rev. D 91, 114009 (2015)
CrossRef ADS Google scholar
[16]
S. Q. Wang, X. G. Wu, X. C. Zheng, G. Chen, and J. M. Shen, An analysis of H → γγ up to three-loop QCD corrections, J. Phys. G 41, 075010 (2014)
CrossRef ADS Google scholar
[17]
S. Q. Wang, X. G. Wu, X. C. Zheng, J. M. Shen, and Q. L. Zhang, The Higgs boson inclusive decay channels H → bb¯ and H → ggup to four-loop level, Eur. Phys. J. C 74, 2825 (2014)
CrossRef ADS Google scholar
[18]
D. M. Zeng, S. Q. Wang, X. G. Wu, and J. M. Shen, The Higgs–Boson decay H → ggto order α5s under the mMOMscheme, arXiv: 1507.03222 [hep-ph]
[19]
S. Q. Wang, X. G. Wu, and S. J. Brodsky, Reanalysis of the higher order perturbative QCD corrections to hadronic Z decays using the principle of maximum conformality, Phys.Rev. D 90, 037503 (2014)
CrossRef ADS Google scholar
[20]
J. M. Shen, X. G. Wu, H. H. Ma, H. Y. Bi, and S. Q. Wang, Renormalization group improved pQCD prediction for Ɣ(1S) leptonic decay, J. High Energy Phys. 1506, 169(2015)
CrossRef ADS Google scholar
[21]
S. J. Brodsky and X. G. Wu, Application of the principle of maximum conformality to the top-quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 85, 114040 (2012)
CrossRef ADS Google scholar
[22]
S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Application of the principle of maximum conformality to the top-quark charge asymmetry at the LHC, Phys. Rev. D 90, 114034 (2014)
CrossRef ADS Google scholar
[23]
S. Q. Wang, X. G. Wu, Z. G. Si, and S. J. Brodsky, Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality, arXiv: 1508.03739 [hep-ph]
[24]
C. F. Qiao, R. L. Zhu, X. G. Wu, and S. J. Brodsky, A possible solution to the B→ ππ puzzle using the principle of maximum conformality, Phys. Lett. B 748, 422 (2015) [arXiv: 1408.1158 [hep-ph]]
CrossRef ADS Google scholar
[25]
H. Baer, et al., The International Linear Collider Technical Design Report- Volume 2: Physics, arXiv: 1306.6352 [hep-ph]
[26]
J. P. Ma and Z. X. Zhang, The super Z-factory group, Sci. China: Phys. Mech. Astron. 53, 1947 (2010)
[27]
P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn and J. Rittinger, Complete O(α4s) QCD corrections to hadronic Z decays, Phys. Rev. Lett. 108, 222003 (2012)
CrossRef ADS Google scholar
[28]
P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Order O(α4s) QCD corrections to Zand tau decays, Phys. Rev. Lett. 101, 012002 (2008)
CrossRef ADS Google scholar
[29]
P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Adler function, Bjorken sum rule, and the Crewther relation to order O(α4s) in a general gauge theory, Phys. Rev. Lett. 104, 132004 (2010)
CrossRef ADS Google scholar
[30]
P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and J. Rittinger, Adler function, sum rules and Crewther relation of order O(α4s): The singlet case, Phys. Lett. B 714, 62 (2012)
CrossRef ADS Google scholar
[31]
M. Czakon, P. Fiedler, and A. Mitov, Resolving the Tevatron top quark forward-backward asymmetry puzzle, Phys. Rev. Lett. 115, 052001 (2015)
CrossRef ADS Google scholar
[32]
M. Neubert, Scale setting in QCD and the momentum flow in Feynman diagrams, Phys. Rev. D 51, 5924 (1995)
CrossRef ADS Google scholar
[33]
M. Beneke and V. M. Braun, Naive non-Abelianization and resummation of fermion bubble chains, Phys. Lett. B 348, 513 (1995)
CrossRef ADS Google scholar
[34]
S. J. Brodsky, A. H. Hoang, J. H. Kuhn, and T. Teubner, Angular distributions of massive quarks and leptons close to threshold, Phys. Lett. B 359, 355 (1995)
CrossRef ADS Google scholar
[35]
H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky, and M. Mojaza, Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale, Phys. Lett. B 748, 13 (2015)
CrossRef ADS Google scholar
[36]
T. A. Aaltonen, et al. (CDF and D0 Collaborations), Combination of measurements of the top-quark pair production cross section from the Tevatron Collider, Phys. Rev. D 89, 072001 (2014)
CrossRef ADS Google scholar
[37]
S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Light-front holographic QCD and emerging confinement, Phys. Rep. 584, 1 (2015)
CrossRef ADS Google scholar
[38]
V. M. Abazov, et al. (D0 Collaboration), Measurement of the forward-backward asymmetry in top quark-antiquark production in ppbar collisions using the lepton+jets channel, Phys. Rev. D 90, 072011 (2014)
CrossRef ADS Google scholar
[39]
V. M. Abazov, et al. (D0 Collaboration), Simultaneous measurement of forward-backward asymmetry and top polarization in dilepton final states from tt¯ production at the Tevatron, arXiv: 1507.05666 [hep-ex].
[40]
T. Aaltonen, et al. (CDF Collaboration), Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83, 112003 (2011)
CrossRef ADS Google scholar
[41]
T. Aaltonen, et al. (CDF Collaboration), Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87, 092002 (2013)
CrossRef ADS Google scholar
[42]
S. J. Brodsky and H. J. Lu, Commensurate scale relations in quantum chromodynamics, Phys. Rev. D 51, 3652 (1995)
CrossRef ADS Google scholar
[43]
A. H. Hoang, J. H. Kuhn, and T. Teubner, Radiation of light fermions in heavy fermion production, Nucl. Phys. B 452, 173 (1995)
CrossRef ADS Google scholar
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(350 KB)

Accesses

Citations

Detail

Sections
Recommended

/