Gauge-invariant approach to quark dynamics
H. Sazdjian
Gauge-invariant approach to quark dynamics
The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallelm transport operation in constructing gauge-invariant Green’s functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green’s function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large-Nc limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.
QCD / quarks / gluons / parallel transport / Wilson loops / gauge-invariant Green’s functions
[1] |
D. J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett.30, 1343 (1973)
CrossRef
ADS
Google scholar
|
[2] |
H. D. Politzer, Reliable perturbative results for strong interactions?Phys. Rev. Lett.30, 1346 (1973)
CrossRef
ADS
Google scholar
|
[3] |
K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974)
CrossRef
ADS
Google scholar
|
[4] |
J. B. Kogut, A review of the lattice gauge theory approach to quantum chromodynamics, Rev. Mod. Phys.55, 775 (1983)
CrossRef
ADS
Google scholar
|
[5] |
M. Kaku, Quantum field theory: A modern Introduction, New York: Oxford University Press, 1993
|
[6] |
F. J. Dyson, The S matrix in quantum electrodynamics, Phys. Rev. 75, 1736 (1949)
CrossRef
ADS
Google scholar
|
[7] |
J. S. Schwinger, On the Green’s functions of quantized fields (1), Proc. Nat. Acad. Sci. USA 37, 452 (1951)
CrossRef
ADS
Google scholar
|
[8] |
R. Alkofer and L. von Smekal, The infrared behavior of QCD Green’s functions, Phys. Rep. 353, 281 (2001)
CrossRef
ADS
Google scholar
|
[9] |
C. S. Fischer, Infrared properties of QCD from Dyson–Schwinger equations, J. Phys. G32, R253 (2006)
CrossRef
ADS
Google scholar
|
[10] |
P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B 420, 267 (1998)
CrossRef
ADS
Google scholar
|
[11] |
S. Mandelstam, Quantum electrodynamics without potentials, Ann. Phys. 19, 1 (1962)
CrossRef
ADS
Google scholar
|
[12] |
S. Mandelstam, Quantization of the gravitational field, Ann. Phys. 19, 25 (1962)
CrossRef
ADS
Google scholar
|
[13] |
I. Bia linicki-Birula, Gauge invariant variables in the Yang–Mills theory, Bull. Acad. Polon. Sci 11, 135 (1963)
|
[14] |
S. Mandelstam, Feynman rules for electromagnetic and Yang–Mills fields from the gauge independent field theoretic formalism, Phys. Rev. 175, 1580 (1968)
CrossRef
ADS
Google scholar
|
[15] |
Y. Nambu, QCD and the string model, Phys. Lett. B 80, 372 (1979)
CrossRef
ADS
Google scholar
|
[16] |
L. S. Brown and W. I. Weisberger, Remarks on the static potential in quantum chromodynamics, Phys. Rev. D 20, 3239 (1979)
CrossRef
ADS
Google scholar
|
[17] |
G. ’tHooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72, 461 (1974)
CrossRef
ADS
Google scholar
|
[18] |
J. C.Collins, Renormalization, UK: Cambridge University Press, 1984, p. 29
|
[19] |
L. D. Faddeev and V. N. Popov, Feynman diagrams for the Yang–Mills fields, Phys. Lett. B 25, 29 (1967)
CrossRef
ADS
Google scholar
|
[20] |
C. Becchi, A Rouet, and R. Stora, Renormalization of gauge theories, Ann. Phys. 98, 287 (1976)
CrossRef
ADS
Google scholar
|
[21] |
I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, preprint Lebedev-75-39 (1975); arXiv: 0812.0580
|
[22] |
E. Corrigan and B. Hasslacher, A functional equation for exponential loop integrals in gauge theories, Phys. Lett. B 81, 181 (1979)
CrossRef
ADS
Google scholar
|
[23] |
G. S. Bali, QCD forces and heavy quark bound states, Phys. Rep. 343, 1 (2001)
CrossRef
ADS
Google scholar
|
[24] |
E. Eichten and F. Feinberg, Spin dependent forces in QCD, Phys. Rev. D 23, 2724 (1981)
CrossRef
ADS
Google scholar
|
[25] |
N. Brambilla, P. Consoli, and G. M. Prosperi, A consistent derivation of the quark–antiquark and three quark potentials in a Wilson loop context, Phys. Rev. D 50, 5878 (1994)
CrossRef
ADS
Google scholar
|
[26] |
N. Brambilla, A. Pineda, J. Soto, and A. Vairo, The QCD potential at O(1=m), Phys. Rev. D 63, 014023 (2001)
CrossRef
ADS
Google scholar
|
[27] |
A. Yu. Dubin, A. B. Kaidalov, and Yu. A. Simonov, Dynamical regimes of the QCD string with quarks, Phys. Lett. B 323, 41 (1994)
CrossRef
ADS
Google scholar
|
[28] |
Yu. A. Simonov, Vacuum background fields in QCD as a source of confinement, 1988, Nucl. Phys. B 307, 512 (1988)
CrossRef
ADS
Google scholar
|
[29] |
A. M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164, 171 (1980)
CrossRef
ADS
Google scholar
|
[30] |
Yu. M. Makeenko and A. A. Migdal, Exact equation for the loop average in multicolor QCD, Phys. Lett. B 88, 135 (1979)
CrossRef
ADS
Google scholar
|
[31] |
Yu. M. Makeenko and A. A. Migdal, Self-consistent area law in QCD, Phys. Lett. B 97, 253 (1980)
CrossRef
ADS
Google scholar
|
[32] |
Yu. M. Makeenko and A. A. Migdal, Quantum Chromodynamics as dynamics of loops, Nucl. Phys. B 188, 269 (1981)
CrossRef
ADS
Google scholar
|
[33] |
A. A. Migdal, Loop equations and 1/Nexpansion,Phys. Rep. 102, 199 (1983)
CrossRef
ADS
Google scholar
|
[34] |
V. S. Dotsenko and S. N. Vergeles, Renormalizability of phase factors in non-Abelian gauge theory, Nucl. Phys. B 169, 527 (1980)
CrossRef
ADS
Google scholar
|
[35] |
R. A. Brandt, F. Neri, and Masa-aki Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24, 879 (1981)
CrossRef
ADS
Google scholar
|
[36] |
V. A. Kazakov and I. K. Kostov, Non-linear strings in two-dimensional U(∞) gauge theory, Nucl. Phys. B 176, 199 (1980)
CrossRef
ADS
Google scholar
|
[37] |
V. A. Kazakov, Wilson loop average for an arbitrary contour in two-dimensional U(N) gauge theory, Nucl. Phys. B 179, 283 (1981)
CrossRef
ADS
Google scholar
|
[38] |
N. E. Bralić, Exact computation of loop averages in two-dimensional Yang–Mills theory, Phys. Rev. D 22, 3090 (1980)
CrossRef
ADS
Google scholar
|
[39] |
Yu. Makeenko, Large-Ngauge theories, NATO Sci. Ser. C 556, 285 (2000); arXiv: hep-th/0001047
|
[40] |
F. Jugeau and H. Sazdjian, Bound state equation in the Wilson loop approach with minimal surfaces, Nucl. Phys. B 670, 221 (2003)
CrossRef
ADS
Google scholar
|
[41] |
H. Sazdjian, Integral equation for gauge invariant quark two-point Green’s function in QCD, Phys. Rev. D 77, 045028 (2008)
CrossRef
ADS
Google scholar
|
[42] |
L. Durand and E. Mendel, Functional equations for path dependent phase factors in Yang–Mills theories, Phys. Lett. B 85, 241 (1979)
CrossRef
ADS
Google scholar
|
[43] |
G. ’t Hooft, A two-dimensional model for mesons, Nucl. Phys. B 75, 461 (1974)
CrossRef
ADS
Google scholar
|
[44] |
H. Sazdjian, Spectral properties of the gauge invariant quark Green’s function in two-dimensional QCD, Phys. Rev. D 81, 114008 (2010)
CrossRef
ADS
Google scholar
|
[45] |
H. D. Politzer, Effective quark masses in the chiral limit, Nucl. Phys. B 117, 397 (1976)
CrossRef
ADS
Google scholar
|
[46] |
A. S. Wightman, Quantum field theory in terms of vacuum expectation values, Phys. Rev. 101, 860 (1956)
CrossRef
ADS
Google scholar
|
[47] |
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston: Row, Peterson and Co., 1961, pp. 721–742
|
[48] |
G. ’t Hooft and M. Veltman, Diagrammar, NATO Adv. Study Inst. Serv. Phys. 4, 177 (1974)
CrossRef
ADS
Google scholar
|
[49] |
G. Källén, On the definition of the renormalization constants in quantum electrodynamics, Helv. Phys. Acta 25, 417 (1952)
|
[50] |
H. Lehmann, On the properties of propagation functions and renormalization constants of quantized fields, Nuovo Cim. 11, 342 (1954)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |