Orientation-dependent ferroelectricity of strained PbTiO3 films

Hui-Min Zhang, Ming An, Xiao-Yan Yao, Shuai Dong

PDF(240 KB)
PDF(240 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 107701. DOI: 10.1007/s11467-015-0512-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Orientation-dependent ferroelectricity of strained PbTiO3 films

Author information +
History +

Abstract

PbTiO3 is a simple but very important ferroelectric oxide that has been extensively studied and widely used in various technological applications. However, most previous studies and applications were based on the bulk material or the conventional [001]-orientated films. There are few studies on PbTiO3 films grown along other crystalline axes. In this study, a first-principles calculation was performed to compute the polarization of PbTiO3 films strained by SrTiO3 and LaAlO3 substrates. Our results show that the polarization of PbTiO3 films strongly depends on the growth orientation as well as the monoclinic angles. Further, it is suggested that the ferroelectricity of PbTiO3 mainly depends on the tetragonality of the lattice, instead of the simple strain.

Keywords

PbTiO3 / tetragonality / strain

Cite this article

Download citation ▾
Hui-Min Zhang, Ming An, Xiao-Yan Yao, Shuai Dong. Orientation-dependent ferroelectricity of strained PbTiO3 films. Front. Phys., 2015, 10(6): 107701 https://doi.org/10.1007/s11467-015-0512-y

References

[1]
E.Dagotto, When oxides meet face to face, Science318(5853), 1076 (2007)
CrossRef ADS Google scholar
[2]
J.Mannhart, and D. G.Schlom, Oxide interfaces - An opportunity for electronics, Science327(5973), 1607 (2010)
CrossRef ADS Google scholar
[3]
H. Y.Hwang, Y.Iwasa, M.Kawasaki, B.Keimer, N.Nagaosa, and Y.Tokura, Emergent phenomena at oxide interfaces, Nat. Mater.11(2), 103 (2012)
CrossRef ADS Google scholar
[4]
W. S.Choi, S. A.Lee, J. H.You, S.Lee, and H. N.Lee, Resonant tunnelling in a quantum oxide superlattice, Nat. Commun.6, 7424 (2015)
CrossRef ADS Google scholar
[5]
L.Jiang, W. S.Choi, H.Jeen, S.Dong, Y.Kim, M. G.Han, Y.Zhu, S.Kalinin, E.Dagotto, T.Egami, and H. N.Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett.13(12), 5837 (2013)
CrossRef ADS Google scholar
[6]
S.Dong and E.Dagotto, Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices, Phys. Rev. B87(19), 195116 (2013)
CrossRef ADS Google scholar
[7]
H. M.Zhang, Y. K.Weng, X. Y.Yao, and S.Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B91(19), 195145 (2015)
CrossRef ADS Google scholar
[8]
C. G.Duan, Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism, Front. Phys.7(4), 375 (2012)
CrossRef ADS Google scholar
[9]
K.Ueda, H.Tabata, and T.Kawai, Control of magnetic properties in LaCrO3-LaFeO3 artificial superlattices, J. Appl. Phys.89(5), 2847 (2001)
CrossRef ADS Google scholar
[10]
Y.Zhu, S.Dong, Q.Zhang, S.Yunoki, Y.Wang, and J. M.Liu, Tailoring magnetic orders in (LaFeO3)n/(LaCrO3)n superlattices model, J. Appl. Phys.110(5), 053916 (2011)
CrossRef ADS Google scholar
[11]
M.Gibert, P.Zubko, R.Scherwitzl, J.Íñiguez, and J. M.Triscone, Exchange bias in LaNiO3-LaMnO3 superlattices, Nat. Mater.11(3), 195 (2012)
CrossRef ADS Google scholar
[12]
X.Huang, Y. K.Tang, and S.Dong, Strain-engineered A-type antiferromagnetic order in YTiO3: A first principles calculation, J. Appl. Phys. 113, 17E108 (2013)
[13]
X.Huang, Q. Y.Xu, and S.Dong, Orientationdependent magnetism and orbital structure of strained YTiO3 films on LaAlO3 substrates, J. Appl. Phys. 117, 17C703 (2015)
[14]
S. C.Chae, Y. J.Chang, S. S. A.Seo, T. W.Noh, D. W.Kim, and C. U.Jung, Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films, Appl. Phys. Lett.89(18), 182512 (2006)
CrossRef ADS Google scholar
[15]
Y. K.Weng and S.Dong, Magnetism and electronic structure of (001)- and (111)-oriented LaTiO3 bilayers sandwiched in LaScO3 barriers, J. Appl. Phys. 117, 17C716 (2015) http://dx.doi.org/10.1063/1.4913637
[16]
R. N.Song, M. H.Hu, X. R.Chen, and J. D.Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys.10(3), 106802 (2015)
CrossRef ADS Google scholar
[17]
A.Sani, M.Hafland, and D.Levy, Pressure and temperature dependence of the ferroelectric-paraelectric phase transition in PbTiO3, J. Solid State Chem.167(2), 446 (2002)
CrossRef ADS Google scholar
[18]
S. H.Lee, H. M.Jang, S. M.Cho, and G. C.Yi, Polarized Raman scattering of epitaxial PbTiO3 thin film with coexisting c and a domains, Appl. Phys. Lett.80(17), 3165 (2002)
CrossRef ADS Google scholar
[19]
V. G.Gavrilyachenko, R. I.Spinko, M. A.Martynenko, and E. G.Fesenko, Spontaneous polarization and coercive field of lead titanate, Sov. Phys. Solid State12, 1203 (1970)
[20]
M. J.Haun, E.Furman, S. J.Jang, H. A.McKinstry, and L. E.Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys.62(8), 3331 (1987)
CrossRef ADS Google scholar
[21]
H.Sharma, J.Kreisel, and P.Ghosez, First-principles study of PbTiO3 under uniaxial strains and stresses, Phys. Rev. B90(21), 214102 (2014)
CrossRef ADS Google scholar
[22]
E.Bousquet, M.Dawber, N.Stucki, C.Lichtensteiger, P.Hermet, S.Gariglio, J. M.Triscone, and P.Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature452(7188), 732 (2008)
CrossRef ADS Google scholar
[23]
Y. L.Tang, Y. L.Zhu, X. L.Ma, A. Y.Borisevich, A. N.Morozovska, E. A.Eliseev, W. Y.Wang, Y. J.Wang, Y. B.Xu, Z. D.Zhang, and S. J.Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films, Science348(6234), 547 (2015)
CrossRef ADS Google scholar
[24]
G.Kresse and J.Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B47(1), 558 (1993)
CrossRef ADS Google scholar
[25]
G.Kresse, and J.Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B54(16), 11169 (1996)
CrossRef ADS Google scholar
[26]
J. P.Perdew, A.Ruzsinszky, G. I.Csonka, O. A.Vydrov, G. E.Scuseria, L. A.Constantin, X.Zhou, and K.Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett.100(13), 136406 (2008)
CrossRef ADS Google scholar
[27]
J. P.Perdew, K.Burke, and M.Frnzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett.77(18), 3865 (1996)
CrossRef ADS Google scholar
[28]
G.Kresse, and D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758 (1999)
CrossRef ADS Google scholar
[29]
P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B50(24), 17953 (1994)
CrossRef ADS Google scholar
[30]
S. L.Dudarev, G. A.Botton, S. Y.Savrasov, C. J.Humphreys, and A. P.Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B57(3), 1505 (1998)
CrossRef ADS Google scholar
[31]
R.Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66(3), 899 (1994)
CrossRef ADS Google scholar
[32]
G.Sághi-Szabó, R. E.Cohen, and H.Krakauer, First-Principles Study of Piezoelectricity in PbTiO3, Phys. Rev. Lett.80(19), 4321 (1998)
CrossRef ADS Google scholar
[33]
S.Piskunov, E.Heifets, R. I.Eglitis, and G.Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study, Comput. Mater. Sci.29(2), 165 (2004)
CrossRef ADS Google scholar
[34]
C. J.Howard, B. J.Kennedy, and B. C.Chakoumakos, Neutron powder diffraction study of rhombohedral rareearth aluminates and the rhombohedral to cubic phase transition, J. Phys. Condens. Matter12(4), 349 (2000)
CrossRef ADS Google scholar
[35]
R.Oja, K.Johnston, J.Frantti, and R. M. Nieminen, Computational study of (111) epitaxially strained ferroelectric perovskites BaTiO3 and PbTiO3, Phys. Rev. B78(9), 094102 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(240 KB)

Accesses

Citations

Detail

Sections
Recommended

/