Orientation-dependent ferroelectricity of strained PbTiO3 films

Hui-Min Zhang , Ming An , Xiao-Yan Yao , Shuai Dong

Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 107701

PDF (240KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (6) : 107701 DOI: 10.1007/s11467-015-0512-y
RESEARCH ARTICLE

Orientation-dependent ferroelectricity of strained PbTiO3 films

Author information +
History +
PDF (240KB)

Abstract

PbTiO3 is a simple but very important ferroelectric oxide that has been extensively studied and widely used in various technological applications. However, most previous studies and applications were based on the bulk material or the conventional [001]-orientated films. There are few studies on PbTiO3 films grown along other crystalline axes. In this study, a first-principles calculation was performed to compute the polarization of PbTiO3 films strained by SrTiO3 and LaAlO3 substrates. Our results show that the polarization of PbTiO3 films strongly depends on the growth orientation as well as the monoclinic angles. Further, it is suggested that the ferroelectricity of PbTiO3 mainly depends on the tetragonality of the lattice, instead of the simple strain.

Keywords

PbTiO3 / tetragonality / strain

Cite this article

Download citation ▾
Hui-Min Zhang, Ming An, Xiao-Yan Yao, Shuai Dong. Orientation-dependent ferroelectricity of strained PbTiO3 films. Front. Phys., 2015, 10(6): 107701 DOI:10.1007/s11467-015-0512-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E.Dagotto, When oxides meet face to face, Science 318(5853), 1076 (2007)

[2]

J.Mannhart, and D. G.Schlom, Oxide interfaces - An opportunity for electronics, Science 327(5973), 1607 (2010)

[3]

H. Y.Hwang, Y.Iwasa, M.Kawasaki, B.Keimer, N.Nagaosa, and Y.Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)

[4]

W. S.Choi, S. A.Lee, J. H.You, S.Lee, and H. N.Lee, Resonant tunnelling in a quantum oxide superlattice, Nat. Commun. 6, 7424 (2015)

[5]

L.Jiang, W. S.Choi, H.Jeen, S.Dong, Y.Kim, M. G.Han, Y.Zhu, S.Kalinin, E.Dagotto, T.Egami, and H. N.Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett. 13(12), 5837 (2013)

[6]

S.Dong and E.Dagotto, Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices, Phys. Rev. B 87(19), 195116 (2013)

[7]

H. M.Zhang, Y. K.Weng, X. Y.Yao, and S.Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B 91(19), 195145 (2015)

[8]

C. G.Duan, Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism, Front. Phys. 7(4), 375 (2012)

[9]

K.Ueda, H.Tabata, and T.Kawai, Control of magnetic properties in LaCrO3-LaFeO3 artificial superlattices, J. Appl. Phys. 89(5), 2847 (2001)

[10]

Y.Zhu, S.Dong, Q.Zhang, S.Yunoki, Y.Wang, and J. M.Liu, Tailoring magnetic orders in (LaFeO3)n/(LaCrO3)n superlattices model, J. Appl. Phys. 110(5), 053916 (2011)

[11]

M.Gibert, P.Zubko, R.Scherwitzl, J.Íñiguez, and J. M.Triscone, Exchange bias in LaNiO3-LaMnO3 superlattices, Nat. Mater. 11(3), 195 (2012)

[12]

X.Huang, Y. K.Tang, and S.Dong, Strain-engineered A-type antiferromagnetic order in YTiO3: A first principles calculation, J. Appl. Phys. 113, 17E108 (2013)

[13]

X.Huang, Q. Y.Xu, and S.Dong, Orientationdependent magnetism and orbital structure of strained YTiO3 films on LaAlO3 substrates, J. Appl. Phys. 117, 17C703 (2015)

[14]

S. C.Chae, Y. J.Chang, S. S. A.Seo, T. W.Noh, D. W.Kim, and C. U.Jung, Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films, Appl. Phys. Lett. 89(18), 182512 (2006)

[15]

Y. K.Weng and S.Dong, Magnetism and electronic structure of (001)- and (111)-oriented LaTiO3 bilayers sandwiched in LaScO3 barriers, J. Appl. Phys. 117, 17C716 (2015) http://dx.doi.org/10.1063/1.4913637

[16]

R. N.Song, M. H.Hu, X. R.Chen, and J. D.Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys. 10(3), 106802 (2015)

[17]

A.Sani, M.Hafland, and D.Levy, Pressure and temperature dependence of the ferroelectric-paraelectric phase transition in PbTiO3, J. Solid State Chem. 167(2), 446 (2002)

[18]

S. H.Lee, H. M.Jang, S. M.Cho, and G. C.Yi, Polarized Raman scattering of epitaxial PbTiO3 thin film with coexisting c and a domains, Appl. Phys. Lett. 80(17), 3165 (2002)

[19]

V. G.Gavrilyachenko, R. I.Spinko, M. A.Martynenko, and E. G.Fesenko, Spontaneous polarization and coercive field of lead titanate, Sov. Phys. Solid State 12, 1203 (1970)

[20]

M. J.Haun, E.Furman, S. J.Jang, H. A.McKinstry, and L. E.Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys. 62(8), 3331 (1987)

[21]

H.Sharma, J.Kreisel, and P.Ghosez, First-principles study of PbTiO3 under uniaxial strains and stresses, Phys. Rev. B 90(21), 214102 (2014)

[22]

E.Bousquet, M.Dawber, N.Stucki, C.Lichtensteiger, P.Hermet, S.Gariglio, J. M.Triscone, and P.Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452(7188), 732 (2008)

[23]

Y. L.Tang, Y. L.Zhu, X. L.Ma, A. Y.Borisevich, A. N.Morozovska, E. A.Eliseev, W. Y.Wang, Y. J.Wang, Y. B.Xu, Z. D.Zhang, and S. J.Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films, Science 348(6234), 547 (2015)

[24]

G.Kresse and J.Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

[25]

G.Kresse, and J.Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

[26]

J. P.Perdew, A.Ruzsinszky, G. I.Csonka, O. A.Vydrov, G. E.Scuseria, L. A.Constantin, X.Zhou, and K.Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)

[27]

J. P.Perdew, K.Burke, and M.Frnzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

[28]

G.Kresse, and D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

[29]

P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

[30]

S. L.Dudarev, G. A.Botton, S. Y.Savrasov, C. J.Humphreys, and A. P.Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)

[31]

R.Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66(3), 899 (1994)

[32]

G.Sághi-Szabó, R. E.Cohen, and H.Krakauer, First-Principles Study of Piezoelectricity in PbTiO3, Phys. Rev. Lett. 80(19), 4321 (1998)

[33]

S.Piskunov, E.Heifets, R. I.Eglitis, and G.Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study, Comput. Mater. Sci. 29(2), 165 (2004)

[34]

C. J.Howard, B. J.Kennedy, and B. C.Chakoumakos, Neutron powder diffraction study of rhombohedral rareearth aluminates and the rhombohedral to cubic phase transition, J. Phys. Condens. Matter 12(4), 349 (2000)

[35]

R.Oja, K.Johnston, J.Frantti, and R. M. Nieminen, Computational study of (111) epitaxially strained ferroelectric perovskites BaTiO3 and PbTiO3, Phys. Rev. B 78(9), 094102 (2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (240KB)

1235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/