Unprecedentedly rapid transport of single-file rolling water molecules
Qiu Tong(邱桐), Huang Ji-Ping(黄吉平)
Unprecedentedly rapid transport of single-file rolling water molecules
The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.
water molecules / carbon nanotubes / molecular dynamics / terahertz electric field / electrohydrodynamics / Debye double-relaxation theory
[1] |
T. B. Sisan and S. Lichter, Solitons transport water through narrow carbon nanotubes, Phys. Rev. Lett. 112(4), 044501 (2014)
|
[2] |
C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett. 111(24), 244501 (2013)
|
[3] |
K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306(5700), 1362 (2004)
|
[4] |
M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185), 301 (2008)
|
[5] |
A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, and P. M. Ajayan, Carbon nanotube filters, Nat. Mater. 3(9), 610 (2004)
|
[6] |
Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10(1), 116 (2015)
|
[7] |
C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
|
[8] |
G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
|
[9] |
X. J. Gong, J. Y. Li, H. Zhang, R. Z. Wan, H. J. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101(25), 257801 (2008)
|
[10] |
X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nat. Nanotechnol. 2(11), 709 (2007)
|
[11] |
M. Ma, F. Grey, L. M. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. L. Liu, and Q. S. Zheng, Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nat. Nanotechnol. 10(8), 692 (2015)
|
[12] |
Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
|
[13] |
G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
|
[14] |
M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nanoscale hydrodynamics- enhanced flow in carbon nanotubes, Nature 438(7064), 44 (2005)
|
[15] |
J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776), 1034 (2006)
|
[16] |
J. A. Thomas and A. J. H. McGaughey, Water flow in carbon nanotubes: Transition to subcontinuum transport, Phys. Rev. Lett. 102(18), 184502 (2009)
|
[17] |
C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
|
[18] |
A. Kalra, S. Garde, and G. Hummer, Osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. USA 100(18), 10175 (2003)
|
[19] |
A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusioosmosis and beyond, Phys. Rev. Lett. 96(18), 186102 (2006)
|
[20] |
M. J. Longhurst and N. Quirke, Temperature-driven pumping of fluid through single-walled carbon nanotubes, Nano Lett. 7(11), 3324 (2007)
|
[21] |
Q. L. Zhang, W. Z. Jiang, J. Liu, R. D. Miao, and N. Sheng, Water transport through carbon nanotubes with the radial breathing mode, Phys. Rev. Lett. 110(25), 254501 (2013)
|
[22] |
Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
|
[23] |
X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115(16), 4768 (2011)
|
[24] |
Z. Chi, C. Luo, and Y. Dai, Comment on “Electrical-driven transport of endohedral fullerene encapsulating a single water molecule, Phys. Rev. Lett. 113(11), 119601 (2014)
|
[25] |
K. F. Rinne, S. Gekle, D. J. Bonthuis, and R. R. Netz, Nanoscale pumping of water by AC electric fields, Nano Lett. 12(4), 1780 (2012)
|
[26] |
S. de Luca, B. D. Todd, J. S. Hansen, and P. J. Daivis, Electropumping of water with rotating electric fields, J. Chem. Phys. 138(15), 154712 (2013)
|
[27] |
X. P. Li, G. P. Kong, X. Zhang, and G. W. He, Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field, Appl. Phys. Lett. 103(14), 143117 (2013)
|
[28] |
J. Wong-ekkabut, M. S. Miettinen, C. Dias, and M. Karttunen, Static charges cannot drive a continuous flow of water molecules through a carbon nanotube, Nat. Nanotechnol. 5(8), 555 (2010)
|
[29] |
J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
|
[30] |
M. O. Jensen, E. Tajkhorshid, and K. Schulten, Electrostatic tuning of permeation and selectivity in aquaporin water channels, Biophys. J. 85(5), 2884 (2003)
|
[31] |
E. Tajkhorshid, P. Nollert, M. O. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296(5567), 525 (2002)
|
[32] |
B. L. de Groot, T. Frigato, V. Helms, and H. Grubmuller, The mechanism of proton exclusion in the aquaporin-1 water channel, J. Mol. Biol. 333(2), 279 (2003)
|
[33] |
J. S. Hub and B. L. de Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins, Proc. Natl. Acad. Sci. USA 105(4), 1198 (2008)
|
[34] |
B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294(5550), 2353 (2001)
|
[35] |
J. P. Huang, K. W. Yu, and G. Q. Gu, Electrorotation of a pair of spherical particles, Phys. Rev. E 65(2), 021401 (2002)
|
[36] |
J. P. Huang, M. Karttunen, K. W. Yu, and L. Dong, Dielectrophoresis of charged colloidal suspensions, Phys. Rev. E 67(2), 021403 (2003)
|
[37] |
T. Meissner and F. J. Wentz, IEEE transactions on geoscience and remote sensing, Complex Dielectric Constant of Pure and Sea Water from Microwave Satellite Observations 42(9), 1836 (2004)
|
[38] |
J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
|
[39] |
G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
|
[40] |
P. Debye, PolarMolecules, Chemical Catalog Company, New York, 1929
|
[41] |
J. T. Kindt and C. A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100(24), 10373 (1996)
|
[42] |
C. Ro?nne, L. Thrane, P.O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation, J. Phys. Chem. 107(14), 5319 (1997)
|
[43] |
H. J. Liebe, G. A. Hufford, and T. Manabe, A model for the complex permittivity of water at frequencies below 1 THz, J. Infrared Millim. Terahertz Waves 12(7), 659 (1991)
|
[44] |
R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0 °C and 35 °C, Chem. Phys. Lett. 306(1−2), 57 (1999)
|
[45] |
Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig, Electrokinetic behaviour of colloidal particles in travelling electric fields: Studies using yeast cells, J. Phys. D Appl. Phys. 26(9), 1528 (1993)
|
[46] |
S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, G, Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70(9), 1909 (1998)
|
[47] |
M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, Electromanipulation and separation of cells using travelling electric fields, J. Phys. D Appl. Phys. 29(8), 2198 (1996)
|
[48] |
U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694(3), 227 (1982)
|
[49] |
K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction, Nano Lett. 10(10), 4067 (2010)
|
[50] |
B. Hess,
|
[51] |
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)
|
[52] |
B. Mukherjee, P. K. Maiti, C. Dasgupta, and A. K. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2(6), 1189 (2008)
|
[53] |
A. B. Farimani, Y. Wu, and N. R. Aluru, Rotational motion of a singlewater molecule in a buckyball, Phys. Chem. Chem. Phys. 15(41), 17993 (2013)
|
[54] |
J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
|
[55] |
H. P. Fang, R. Z. Wan, X. J. Gong, H. J. Lu, and S. Y. Li, Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications, J. Phys. D 41(10), 103002 (2008)
|
[56] |
M. D. Ma, L. M. Shen, J. Sheridan, J. Z. Liu, C. Chen, and Q. S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(3), 036316 (2011)
|
[57] |
T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S. R. Harutyunyan, K. H. Ernst, and B. L. Feringa, Electrically driven directional motion of a fourwheeled molecule on a metal surface, Nature 479(7372), 208 (2011)
|
[58] |
E.W. Frey, A. A. Gooding, S. Wijeratne, and C. H. Kiang, Understanding the physics of DNA using nanoscale singlemolecule manipulation, Front. Phys. 7(5), 576 (2012)
|
/
〈 | 〉 |