First-principles study of structural, elastic, and electronic properties of CeB6 under pressure

Mei Tang, Lei Liu, Yan Cheng, Guang-Fu Ji

PDF(480 KB)
PDF(480 KB)
Front. Phys. ›› DOI: 10.1007/s11467-015-0509-6
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles study of structural, elastic, and electronic properties of CeB6 under pressure

Author information +
History +

Abstract

We performed a first-principles study of the electronic, elastic, and thermal properties of the rareearth hexaboride CeB6 using the local density approximation (LDA) in consideration of the effective onsite Coulomb parameter Ueff. To systemically evaluate the effect of Ueff on the structure of the material, the dependences of the lattice parameter a0 and bulk modulus B on Ueff were examined in the framework of the LDA+U and GGA(PBE)+U scheme. We obtained a lattice constant a0, elastic constants Cij , and a bulk modulus B at 0 K and 0 GPa that were in good agreement with the experimental results and other theoretical findings. We focused on the electronic structure by analyzing the variation of the density of states with different Ueff values and pressures, which indicates the metallic characteristic of CeB6. Interestingly, the effect of high pressure was similar to that of increasing Ueff , as the peaks at the bottom of the conduction band moved to the high-energy region in both cases. The elastic constants Cij , bulk modulus B, shear modulus G, Young’s modulus E, shear-sound velocity VS, and longitudinal-sound velocity VL were calculated from 0 to 120 GPa. Additionally, the Debye temperature ΘD and elastic Debye temperature ΘE were systematically calculated using the thermodynamic methods in the range of 0–100 GPa. This research may provide a comprehensive understanding of the Kondo compound CeB6 and similar rare-earth hexaborides.

Keywords

CeB6 / structural properties / elastic properties / thermal properties / electronic structure

Cite this article

Download citation ▾
Mei Tang, Lei Liu, Yan Cheng, Guang-Fu Ji. First-principles study of structural, elastic, and electronic properties of CeB6 under pressure. Front. Phys., https://doi.org/10.1007/s11467-015-0509-6

References

[1]
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B 75(3), 035115 (2007)
CrossRef ADS Google scholar
[2]
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+U method, Front. Phys. 8(4), 405 (2013)
CrossRef ADS Google scholar
[3]
W. Li, C. Setty, X. H. Chen, and J. P. Hu, Electronic and magnetic structures of chain structured iron selenide compounds, Front. Phys. 9(4), 471 (2014)
CrossRef ADS Google scholar
[4]
O. Zaharko and P. Fischer, Zero-field magnetic structure in CeB6 reinvestigated by neutron diffraction and muon spin relaxation, Phys. Rev. B 68(21), 214401 (2003)
CrossRef ADS Google scholar
[5]
D. Hall and Z. Fisk, Magnetic-field dependence of the hightemperature magnetically ordered phase transition in CeB6, Phys. Rev. B 62(1), 84 (2000)
CrossRef ADS Google scholar
[6]
R. G. Goodrich, D. P. Young, D. Hall, L. Balicas, Z. Fisk, and N. Harrison, Extension of temperature-magnetic field phase diagram of CeB6, Phys. Rev. B 69(5), 054415 (2004)
CrossRef ADS Google scholar
[7]
N. Foroozani, J. Lim, G. Fabbris, P.F.S. Rosa, Z. Fisk, and J.S. Schilling, Suppression of dense Kondo state in CeB6 under pressure, Physica B 457, 12 (2015)
CrossRef ADS Google scholar
[8]
B. Lüthi, S. Blumenroder, B. Hillebrands, E. Zirngiebl, G. Güntherodt, and K. Winzer, Elastic and magnetoelastic effects in CeB6, Z. Phys. B: Condens. Matter 58(1), 31
CrossRef ADS Google scholar
[9]
S. Nakamura, T. Goto, S. Kunii, K. Iwashita, and A. Tamaki, Quadrupole-strain interaction in rare earth hexaborides, J. Phys. Soc. Jpn. 63(2), 623 (1994)
CrossRef ADS Google scholar
[10]
T.Goto, A. Tamaki, S. Kunii, T. Nakajima, T. Fujimura, T. Kasuya, T. Komatsubarra, and S. B. Woods, Elastic properties in CeB6, J. Magn. Magn. Mater. 31, 419 (1983)
CrossRef ADS Google scholar
[11]
C.J. Pickard, B. Winkler, R. K. Chen, M.C. Payne, and D. Vanderbilt, Structural properties of Lanthanide and Actinide compounds within the Plane Wave Pseudopotential Approach, Phys. Rev. Lett. 85(24), 5122 (2000)
CrossRef ADS Google scholar
[12]
W. Sikora, F. Bialas, L. Pytlik, and J. Malinowski, Symmetry analysis of antiferroquadrupolar order and accompanying atomic displacements in CeB6, Solid State Sci. 7(6), 645 (2005)
CrossRef ADS Google scholar
[13]
Sandeep, M. P. Ghimire, D. P. Rai, P. K. Patra, and R. K. Thapa, Study of Bulk modulus, Volume, Energy, latticeparameters and magnetic moments in rare earth hexaborides using density functional theory, J. Phys.: Conf. Ser. 377(1), 012084 (2012)
[14]
T. G. Liu, W. Q. Zhang, and Y. L. Li, First-principles study on the structure, electronic and magnetic properties of HoSin (n= 1–12, 20) clusters, Front. Phys. 9(2), 218 (2014)
CrossRef ADS Google scholar
[15]
T. Gürel and R. Eryiğit, An initio lattice dynamics and thermodynamics of rare-earth hexaborides LaB6 and CeB6, Phys. Rev. B 82(10), 104302 (2010)
CrossRef ADS Google scholar
[16]
M. Neupane, N. Alidoust, G. Bian, S.Y. Xu, P. P. Shibayev, et al., Fermi surface topology and hotspots distribution in Kondo lattice system CeB6, arXiv: 1411.0302 (2014)
[17]
S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, and G. Balducci, Taming multiple valency with density functionals: A case study of defective ceria, Phys. Rev. B 71(4), 041102 (2005)
CrossRef ADS Google scholar
[18]
G. Kresse, P. Blaha, J. L. F. Da Silva, and M. V. Ganduglia Pirovano, Comment on “Taming multiple valency with density functionals: A case study of defective ceria”, Phys. Rev. B 72(23), 237101 (2005)
CrossRef ADS Google scholar
[19]
S. V. Demishev, A. V. Semeno, A. V. Bogach, N. A. Samarin, T. V. Ishchenko, V. B. Filipov, N. Y. Shitsevalova, and N. E. Sluchanko, Magnetic spin resonance in CeB6, Phys. Rev. B 80(24), 245106 (2009)
CrossRef ADS Google scholar
[20]
P. Schlottmann, Electron spin resonance in antiferroquadrupolar-ordered CeB6, Phys. Rev. B 86(7), 075135 (2012)
CrossRef ADS Google scholar
[21]
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(4), 1045 (1992)
CrossRef ADS Google scholar
[22]
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A peeudopotential plane-wave study, Int. J. Quant. Chem. 77(5), 895 (2000)
CrossRef ADS Google scholar
[23]
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58(8), 1200 (1980)
CrossRef ADS Google scholar
[24]
V. I. Anisimov, I. V. Solovyev, and M. A. Korotin, Density functional theory and NiO photoemission spectra, Phys. Rev. B 48(23), 16929 (1993)
CrossRef ADS Google scholar
[25]
M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B 71(3), 035105 (2005)
CrossRef ADS Google scholar
[26]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[27]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[28]
S. Sato, A spherical charge distribution in a crystal of CeB6, J. Magn. Magn. Mater. 52(1–4), 310 (1985)
CrossRef ADS Google scholar
[29]
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71(11), 809 (1947)
CrossRef ADS Google scholar
[30]
J. M. Leger, J. Rossat-Mignod, S. Kunii, and T. Kasuya, High pressure compression of CeB6 up to 20 GPa, Solid State Commun. 54(11), 995 (1985)
CrossRef ADS Google scholar
[31]
X. Gonze, et al., ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180(12), 2582 (2009)
CrossRef ADS Google scholar
[32]
Y. K. Wei, J. X. Yu, Z. G. Li, Y. Cheng, and G. F. Ji, Elastic and thermodynamic properties of CaB6 under pressure from first principles, Physica B 406(23), 4476 (2011)
CrossRef ADS Google scholar
[33]
D. M. Teter, Computational alchemy: The search for new superhard materials, Mrs. Bulletin 23(01), 22 (1998)
CrossRef ADS Google scholar
[34]
F. Chu, Y. He, D. J. Thoma, and T. E. Mitchell, Elastic constants of the C15 laves phase compound NbCr2, Scr. Metal. Mater. 33(8), 1295 (1995)
CrossRef ADS Google scholar
[35]
K. B. Panda and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comp. Mater. Sci. 35(2), 134 (2006)
CrossRef ADS Google scholar
[36]
M. A. Blanco, E. Francisco, and V. Luaňa, Comput. Phys. Commun. 158(1), 57 (2004)
CrossRef ADS Google scholar
[37]
W. A. Harrison, Elastic Structure and Properties of Solids, Freeman and Company, San- Francisco, 1980
[38]
O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24(7), 909 (1963)
CrossRef ADS Google scholar
[39]
R. Hill, The elastic behavior of a crystalline aggregate, Proc. Soc. London. A 65(5), 349 (1952)
[40]
N. Singh, S. M. Saini, T. Nautiyal, and S. Auluck, Electronic structure and optical properties of rare earth hexabordes RB6 (R= La, Ce, Pr, Nd, Sm, Eu, Gd), J. Phys.: Condens. Matter 19(34), 346226 (2007)
CrossRef ADS Google scholar
[41]
J. Rossat-Mignod, P. Burlet, T. Kasuya, S. Kunii, and T. Komatsubara, Evidence for a modulated ordering in CeB6 due to the Kondo effect, Solid State Commun. 39(3), 471 (1981)
CrossRef ADS Google scholar
[42]
P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B 63(4), 045115 (2001)
CrossRef ADS Google scholar
[43]
J. H. Xu, and A. J. Freeman, Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 precipitates, Phys. Rev. B 41(18), 12553 (1990)
CrossRef ADS Google scholar
[44]
A. Pasturel, C. Colinet, and P. Hicter, Strong chemical interactions in disordered alloys, Physica B & C 132(2), 177 (1985)
CrossRef ADS Google scholar
[45]
J. C. Phillips, Structure and electronic pseudogaps of stable quasicrystals, Phys. Rev. B 47(5), 2522 (1992)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(480 KB)

Accesses

Citations

Detail

Sections
Recommended

/